
https://agilebits.github.io/security-design/images/coverpage-image.png
https://agilebits.github.io/security-design/images/coverpage-image.png
https://agilebits.github.io/security-design/key-security-features.html

1 Key security features

1Password offers a number of notable security features.

True end-to-end encryption All cryptographic keys are generated by the client on your devices, and all
encryption is done locally. Details are in “A deeper look at keys.”

Server ignorance We’re never in the position of learning your account password or cryptographic keys.
Details are in “A modern approach to authentication.”

Nothing “crackable” is stored A typical web service will store a hash of the user’s password. If
captured, that can be used in password cracking attempts. Our two-secret key derivation mixes your
locally held Secret Key with your account password so data we store cannot be used in cracking
attempts. See “Making verifiers uncrackable with 2SKD” for details.

Thrice encrypted in transport When your already encrypted data travels between your device and our
servers, it’s encrypted and authenticated by Transport Layer Security (TLS) and our own transport
encryption. Details are in “Transport security.”

You control sharing Only someone who holds the keys to a vault can share that data with someone
else. We don’t have those keys, so sharing decisions come from you. See “How vaults are shared
securely” for details.

Team-managed data recovery We don’t have the ability to recover your data if you forget your account
password or lose your Secret Key (since you have end-to-end security). But recovery keys can be shared
with team members. Details are in “Restoring a user’s access to a vault.”

https://agilebits.github.io/security-design/deepKeys.html#deepKeys
https://agilebits.github.io/security-design/modernauth.html#modernauth
https://agilebits.github.io/security-design/modernauth.html#sec:2SKD
https://agilebits.github.io/security-design/transport.html#transport
https://agilebits.github.io/security-design/sharedVaults.html#sharedVaults
https://agilebits.github.io/security-design/sharedVaults.html#sharedVaults
https://agilebits.github.io/security-design/restore.html#restore
https://agilebits.github.io/security-design/index.html
https://agilebits.github.io/security-design/principles.html

2 Principles

1Password by AgileBits provides powerful administration of 1Password data (login credentials, for
example). This document describes how this happens securely.

The same approach to security that has driven the design of 1Password prior to offering 1Password
accounts went into the current design. The first one being we can best protect your secrets by not
knowing them.

Principle 1: Privacy by design

It’s impossible to lose, use, or abuse data one doesn’t possess. Therefore we design systems to reduce
the amount of sensitive user data we have or can acquire.

You’ll find Principle 1 exemplified throughout our system, from our inability to acquire your account
password during authentication through our use of Secure Remote Password (SRP) to our use of two-
secret key derivation (2SKD) which ensures we aren’t in a position to even attempt to crack your account
password. Likewise, our use of end-to-end encryption protects you and your data from us and anyone
who may gain access to our servers.

Our second principle follows directly from the first.

Principle 2: Trust the math

Mathematics are more trustworthy than people or software. Therefore, when designing a system, prefer
security that is enforced by cryptography rather than software or personnel policy.

Cryptography prevents one person from seeing the items they’re not entitled to see. Even if an attacker
were able to trick our servers (or people) into misbehaving, the mathematics of cryptography would
prevent most attacks. Throughout this document, assume all access control mechanisms are enforced
through cryptography unless explicitly stated otherwise.

We also strive to bring the best security architectures to people who are not security experts. This is
more than just building a product and system that people want to use, it’s part of the security design
itself.

Principle 3: People are part of the system

If the security of a system depends on people’s behavior, the system must be designed with an
understanding of how people behave.

If people are asked to do something that isn’t humanly possible, they won’t do it. Principle 3 is obvious
once it’s stated, but sadly it has often been overlooked in the design of security systems. For example,
not everyone wants to become a security expert or read this document, but everyone is entitled to
security whether or not they seek to understand how it works.

The underlying mechanisms for even seemingly simple tasks and functions of 1Password are often
enormously complex. Yet according to Principle 3, we don’t wish to confront people with that
complexity. Instead, we choose to simplify things so people can focus on accomplishing the task at
hand.

Concealing the necessary complexity of the design from users when they just want to get things done is
all well and good, but we should never conceal the security design from security experts, system and
security administrators, or curious users. Thus we strive to be open about how our system works.

Principle 4: Openness

Be open and explicit about the security design of our systems so others may scrutinize our decisions.

A security system should be subject to public scrutiny. If the security of a system were to depend on
aspects of the design being kept secret, those aspects would actually be weaknesses. Expert and
external scrutiny is vital both for the initial design and for improving it as needed. This document is part
of our ongoing effort to be open about our security design and implementations.

Part of that openness requires that we acknowledge where we haven’t (yet) been able to fully comply
with all of our design principles. For example, we haven’t been able to deny ourselves the knowledge of
when you use 1Password in contrast to Principle 1; some finer grained access control features are
enforced by server or client policy instead of cryptographically (cf. 2); people still need to put in some
effort to learn how to use 1Password properly (cf. 3); and not everything is yet fully documented (cf. 4).
We do attempt to be clear about these and other issues as they come up and will collect them in the
appendix in “Beware of the Leopard.”

1

https://agilebits.github.io/security-design/leopard.html#leopard
https://agilebits.github.io/security-design/key-security-features.html
https://agilebits.github.io/security-design/apsk.html

Dangerous bend

On occations, this document will go into considerable technical detail that may not be of interest
to every reader. And so, following the conventions developed in The TEX Book , some sections
will be marked as a dangerous bend. Most of the text should flow reasonably well if you choose
to ignore said sections.

Many of those dangerous bend technical discussions involve explaining the rationale for some of the
very specific choices we made selecting cryptographic tools and modes of operation. There are
excellent cryptographic libraries available, offering strong tools for every developer. But even with the
best available tools it’s possible to pick the wrong tool for the specific job or to use it incorrectly. We feel
it’s important not just to follow the advice of professional cryptographers, but to have an understanding
of where that advice comes from. That is, it’s important to know your tools.

Principle 5: Know your tools

We must understand what security properties a tool has and doesn’t have so we use the correct tool the
right way for a particular task.

Throughout this document, there will be a process of elaboration. Descriptions presented in earlier
sections will be accurate as far as they go, but may leave some details for greater discussion at some
other point. Often details of one mechanism make complete sense only in conjunction with details of
another that in turn depend on details of the first. And so, when some mechanism or structure is
described at some point, it may not be the last word on that mechanism.

1. Goldberg (2013)

2. Knuth (1984)

2

https://agilebits.github.io/security-design/bibliography.html#ref-ABblog:Kerchshoffs
https://agilebits.github.io/security-design/bibliography.html#ref-TeXBook

Figure 3.2: Your account password, like a
combination to a lock, is something only you
know.

3 Account password and Secret Key

1Password is designed to help you and your team manage your secrets. But there are some secrets you
need to take care of yourself in order to be able to access and decrypt the data managed by 1Password.
These are your and introduced in this section.

Decrypting your data requires all three of the following: your , your , and a
copy of your encrypted data. As discussed below, each of these is protected in different ways, and each
individually faces different threats. By requiring all three, your data is protected by a combination of the
best of each. Your account password and your Secret Key are your two secrets used in a process we are
calling .

Figure 3.1: Two-secret key derivation combines multiple secrets when deriving authentication and encryption keys.

3.1 Account password

One of the secrets used in is your , and
your account password exists only in your memory. This fact is
fantastic for security because it makes your account password
(pretty much) impossible to steal.

Secrets that must be remembered and used by humans tend to be
guessable by automated password guessing systems. We take
substantial steps to make things harder for those attempting to
guess passwords, but it’s impossible to know the capabilities that a
well-resourced attacker may be able to bring to bear on password
cracking. This is the reason we also include an entirely unguessable
secret — your — in our key derivation. See Story 1 for an illustration of how your Secret Key
comes into play defending you in case of a server breach.

Story 1: A (bad) day in the life of your data

Nobody likes to talk about bad things happening, but sometimes we must.

Oscar somehow gains access to all of the data stored on the 1Password server. We don’t know
how, and we certainly tried to prevent it, but nonetheless, this is the starting point for our story.

Among the data Oscar acquires is an encrypted copy of your private key. (We store that on our
server so that we can deliver it to you when you first set up 1Password on a new device.) If he
can decrypt that private key, he’ll be able to do some very bad things. Nobody (other than Oscar)
wants that to happen.

Oscar will take a look at the encrypted private key and see that it’s encrypted with a randomly
chosen 256-bit AES key. There’s no way he’ll ever be able to guess that. But the private key is
encrypted with a key derived from your account password (and other stuff) so he figures that if he
can guess your account password he will be able to get on with his nefarious business.

But Oscar cannot even begin to launch a password guessing attack. This is because the key that
encrypts your private key is derived not only from your account password, but also from your
Secret Key. Even if he happens to make a correct guess, he won’t know that he has guessed
correctly. A correct guess will fail the same way an incorrect guess will fail without the Secret Key.

Oscar has discovered – much to his chagrin and our delight – even all the data held by AgileBits
is insufficient to verify a correct guess at someone’s account password. “If it weren’t for two-
secret key derivation, I might have gotten away with it,” mutters Oscar. He probably shouldn’t
have bothered stealing the data in the first place. Without the Secret Keys, it’s useless to him.

If Oscar had read this document, he would’ve known that he can’t learn or guess your account
password or Secret Key from data held or sent to 1Password.

account password Secret Key3

account password Secret Key

two-secret key derivation (2SKD)

2SKD account password

Secret Key

https://agilebits.github.io/security-design/principles.html
https://agilebits.github.io/security-design/modernauth.html

Figure 3.3: Your Secret Key is a high-entropy
secret you have on your devices.

3.2 Secret Key

Your is one of the secrets used in , and your is the other. Your
Secret Key is generated on your computer when you first sign up, and is made up of a non-secret
version setting, (“A3”), your non-secret Account ID, and a sequence of 26 randomly chosen characters.
An example might be A3-ASWWYB-798JRYLJVD4-23DC2-86TVM-H43EB . This is uncrackable, but unlike
your account password, isn’t something you’re expected to memorize or even type on a keyboard
regularly.

The hyphens are not part of the actual but used to
improve readability. The version information is neither random nor
secret. The Account ID is random, but not secret, and the remainder
is both random and secret. In talking about the security properties
of the Secret Key, we’ll be talking only about the secret and random
portion. At other times we may refer to the whole thing, including
the non-secret parts.

There are slightly more than 2 possible likely, thus
placing them well outside the range of any sort of guessing. But while the Secret Key is unguessable, it’s
not the kind of thing that can be committed to human memory. Instead of being stored in your head,
your Secret Key will be stored on your device by your 1Password client.

3.3 Emergency Kit

AgileBits has no ability to decrypt your or your team’s data, nor do we have the ability to recover or reset
passwords. The ability to recover or reset the or would give us (or an
attacker who gets into our system) the ability to reset a password to something known to us or the
attacker. We therefore deny ourselves this capability.

This means you must not forget or lose the secrets you need to access and decrypt your data. This is
the reason we very strongly encourage you to save, print, and secure your when you first
create your account. Story 2 illustrates how it might be used.

Story 2: A day in the life of an Emergency Kit

It’s been lonely in this safety deposit box all these months. All I have for company is a Last Will,
which does not make for the most cheerful of companions. But I’ve been entrusted with some of
Alice’s most important secrets. It’s little wonder she keeps me out of sight where I can’t reveal
them to anyone.

It was a crisp February day that winter before last when Alice first clicked “Save Emergency Kit.”
She probably thought that she would never need me, but she dutifully (and wisely) printed me out
and wrote her account password on me. I already contained her Secret Key along with some non-
secret details. She securely deleted any copy of me from her computer and promptly took me to
her bank, where I got locked away in this box. Perhaps never to be looked at again.

But today is different. Today I’m the genie released from long imprisonment. Today I’ll do magic
for my master, Alice. It seems she had a catastrophic disk crash and her backups weren’t working
as expected. She remembered her account password, but she needed to come to me for her
Secret Key. With a fresh copy of 1Password on a new computer, Alice can present the QR code I
bear to teach 1Password all the account details, including the Secret Key. All Alice will have to do
is type in her account password.

What a day! Now I’m being returned to the bank vault. I hope Alice won’t have reason to call upon
me again, but we both feel safe knowing I’m here for her.

Your is a piece of paper (once you’ve printed it) that will contain your account details,
including your . Figure 3.4 shows an example. It also has space for you to write your

. If you’re uncomfortable keeping both your Secret Key and account password on the same
piece of paper, you may decide to store a written backup of your account password separately from your
Emergency Kit.

account password 2SKD Secret Key

Secret Key

128 Secret Key4

account password Secret Key

Emergency Kit

Emergency Kit
Secret Key account

password

Figure 3.4: 1Password Emergency Kit

It’s a challenge for us to find ways to encourage people to print and save their Emergency Kits. During
the 1Password beta period we added a number of places in which we nudged people toward this. This
includes making it clearer what should be done with the , as in Figure 3.5, and by
incorporating it among a set of “quests” users are to encourage to complete after first starting to use
1Password.

Figure 3.5: We encourage users to save their Emergency Kits by a variety of means. One of those means is to make it visually clear what is
expected.

3. The Secret Key was previously known as the Account Key, and that previous name may appear in
internal labelling.

4. Characters in the Secret Key are drawn uniformly from a set of 31 uppercase letters and digits. With
a length of 26, that gives us 3 which is just a tad over 128 bits.

Emergency Kit

126

4 A modern approach to authentication

1Password is an encryption system. Thus, the fundamental security of your data rests
on the fact that your data is encrypted and decrypted on your local device using keys derived from your
secrets which AgileBits has no access to. This encryption is the primary component of 1Password’s
security. How that encryption takes place is the subject of “How vault items are secured.”

End-to-end encryption

Data is only encrypted or decrypted locally on the users’ devices with keys that only the end
users possess. This protects the data and from compromises during
transport or remote storage.

Nonetheless, there is an component to 1Password. For the most part, its job is to ensure
an individual only receives the encrypted data they should receive. “Access control enforcement”
contains more details about what powers are granted to a client that successfully authenticates.

Traditionally, AgileBits has been wary of authentication-based security, and that wariness has manifested
in the design of 1Password in three ways:

1. Our overall design is fundamentally based on encryption.

2. We’ve introduced two-secret key derivation (2SKD) to dramatically reduce the risk associated with
compromise of authentication verifiers.

3. We don’t rely on traditional mechanisms, but instead use
 to avoid most of the problems of traditional authentication.

Dangerous bend

Client authentication keys are derived from the same user secrets from which the encryption keys
are derived (so you have one password for 1Password). So even though the core of 1Password’s
security doesn’t depend on authentication, we must take extra care in the security of
authentication so an attacker can’t work backwards from an information leak in an authentication
process to discover secrets that might aid in decryption.

4.1 What we want from authentication

Your and are used to derive a key that’s used for authenticating with the
service we host. Our service needs to know that you are who you say you are. Your 1Password client
needs to prove to the service it has your account password and Secret Key. Only then will it give you
access to your encrypted data (which your client still must decrypt) or other administrative rights.

When Alice to Bob, she does so by proving she has access to a secret that only she
should have access to. Bob performs some analysis or computation on the proof that Alice offers to
verify it demonstrates Alice’s access to her secret.

Story 3: A very traditional authentication exchange

[ALICE approaches castle gate where BOB is on duty as a guard.]
BOB: Who goes there?
ALICE: It is I, Alice. [ALICE identifies herself.]
[BOB checks checks his list of people who are authorized to enter the castle to see if ALICE is
authorized.]
BOB: What is the password? [BOB asks ALICE to prove her identity.]
ALICE: My password is xyzzy. [She provides proof.]
[BOB verifies that’s the correct password for ALICE.]
BOB: You may enter. [BOB raises the portcullis and ALICE enters.]

We want an system to allow Alice to reliably authenticate herself to Bob without
introducing other security problems, so there are a number of security properties we would like from a
good authentication system. There’s substantial overlap among them, but they’re all technically
separate.

end-to-end (E2E)

E2E

confidentiality integrity

authentication

E2E

authentication Secure Remote Password
(SRP)

account password Secret Key
5

authenticates 6

authentication

file:///Users/megan/Projects/security-design/docs/secureItems.html#secureItems
file:///Users/megan/Projects/security-design/docs/access-control.html#access-control
file:///Users/megan/Projects/security-design/docs/apsk.html
file:///Users/megan/Projects/security-design/docs/secureItems.html

Table 4.1: Sign-in system desiderata

Prove client ID
Prove to the server the user holds the user’s
secret.

Prove server ID
Prove to the user the server holds the server’s
secret.

Eavesdropper safe
Doesn’t reveal any information about either
secret in the process.

Not replayable
Can’t be replayed by someone who has
recorded the process and wants to repeat the
exchange to fake a sign-in at another time.

No secrets received
Doesn’t reveal any information about the user’s
password to the server.

Session key
Establishes a new secret that can be used as an
encryption key for the session.

No cracking
Server never acquires enough information to
facilitate a password-cracking attempt.

4.1.1 Traditional authentication

With a traditional system, the client (such as a web browser) sends a user secret
(typically a password) to the server. The server then processes that password to determine whether or
not it’s correct according to its records. If the server determines it’s correct, it will consider that user
authenticated.

The simplest way to prove you know a secret is to say it, and that’s what the client does in a traditional
system. It simply sends the username and the password to the server. A very traditional version of this is
illustrated in Story 3.

This traditional design has a number of shortcomings. Indeed, it only satisfies the first
disideratum. The most glaring failures of traditional authentication include:

Anyone able to eavesdrop on the conversation will learn the client’s secret. In the exchange in
Story 3 that would correspond to an eavesdropper hearing and learning Alice’s secret password.
If the client is talking to the wrong server it reveals its secret to that potentially malicious
server. In Story 3, that would correspond to Bob not really being the castle guard, and Alice
revealing to her password to an enemy.

In a typical internet login session, those shortcomings are addressed by
to keep the conversation between the client and the server private as it travels over a network and to
prove the identity of the server to the client. As discussed in “Transport Security,” we make use of TLS
but don’t want to rely on it.

4.1.2 Password-Authenticated Key Exchange

The modern approach to covering most of the security properties of we seek is to find a
way for the client and server to prove to each other they each possess the appropriate secret without
either of them revealing any secrets in the process. This is done using a

.

Using some mathematical magic, the server and client are able to send each other puzzles that can only
be solved with knowledge of the appropriate secrets, but no secrets are transmitted during the
exchange. Furthermore, the puzzles are created jointly and uniquely during each session so it’s a

different puzzle each time. This means that an attacker who records one session will not
be able to play that back in an attempt to authenticate.

The “key exchange” part of establishes a session key: A secret encryption key that the parties can
use for the life of the session to encrypt and validate their communication. With 1Password we use this
session key to add an additional layer of encryption in our communication between client and server.

A well-designed – we use , detailed in “Secure Remote
Password” – can satisfy all the requirements we’ve listed except for one. On its own, a PAKE would still
leave something crackable on the server, something unacceptable.

4.1.3 Making verifiers uncrackable with 2SKD

A still doesn’t solve the problem of a server acquiring and storing information that could be used
in a password cracking attempt. A server holds a long-term verifier that’s mathematically related to a
long-term secret used by the client. Although this verifier isn’t a password hash, it can be
considered one for the sake of this immediate discussion. If the client’s long-term secret is derived from
something guessable (such as a weak password), the verifier stored by the server could be used to help
test guesses of that user’s password.

authentication

authentication

Transport Layer Security (TLS)

authentication

password-authenticated key
exchange (PAKE)

authentication

PAKE

7

PAKE Secure Remote Password (SRP)

PAKE

authentication

file:///Users/megan/Projects/security-design/docs/srp.html#srp
file:///Users/megan/Projects/security-design/docs/srp.html#srp

We can (and do) take measures to protect the verifiers we store from capture, and the client uses slow
hashing techniques in generating the verifier. These are essential steps, but given the nature of what
1Password is designed to protect, we feel those steps are insufficient on their own.

We use to ensure data held by the server is not sufficient to launch a
password cracking attempt on a user’s . An attacker who captures server data would

need to make guesses at a user’s account password and have the user’s 128-bit strong .

It’s for this final desideratum we introduced . With this, the information held on our systems cannot
be used to check whether an account password guess is correct or not. Figure 4.1 summarizes which
security properties we can achieve with various authentication schemes.

Figure 4.1: Authentication schemes and what they do for you. The “+multi-factor authentication (MFA)” column lists the security properties
of using traditional authentication with multifactor authentication. The “+2SKD” column lists the security properties of using a PAKE with

twosecret key derivation, as done in 1Password. The first column lists our desired security properties.

Although the internals of our system may appear to be more complex than otherwise
needed for a system whose security is built upon encryption, we need to ensure that
an attack on our authentication system doesn’t expose anything that could be used to decrypt user
data. Therefore the system has been designed to be strong in its own right, and provide no information
either to us or an attacker that could threaten the of user data.

5. Your account password and Secret Key are also used to derive a different key used for the E2E,
which is discussed in later sections.

6. By broadening the definition of “secret,” we could also cover biometric authentication with this
description.

7. This layer provides authenticated encryption for the communication between client and server that is
in addition to the security provided by TLS and 1Password’s fundamental E2E encryption of user
data.

two-secret key derivation (2SKD)
account password

Secret Key

2SKD

authentication
end-to-end (E2E)

confidentiality

Figure 5.1: Algorithm for creating and
populating a vault

5 How vault items are secured

Items in your vaults are encrypted with using 256-bit keys that
are generated by the client on the device, using a cryptographically appropriate random number
generator. This generated key becomes your vault key and is used to encrypt and decrypt the items in
your vault.

1Password uses to provide authenticated encryption, protecting your
encrypted data from tampering. Proper use of authenticated encryption offers a defense against a broad
range of attacks, including .

The vault key is used to encrypt each item in the vault. Items contain
overviews and details that are encrypted separately by the vault key. We
encrypt these separately so we can quickly decrypt the information
needed to list, sort, and find items without having to decrypt everything
in the vault first.

Item overviews include the item fields needed to list items and quickly
match items to websites, such as Title, URLs, password strength
indicator, and tags. Information that’s presented to the user when items
are listed, along with the information needed to match an item to a web
page (URL), are included in the overview.

Item details include the things that don’t need to be used to list or
quickly identify them, such as passwords and contents of notes.

If you have access to a vault, a copy of the vault key is encrypted with your public key. Only you, the
holder of your private key, are able to decrypt that copy of the vault key. Your private key is encrypted
with derived from your and .

Your private/public key pair is created on your device by your client when you first sign up. Neither we
nor a team administrator ever have the opportunity to capture your private key. Your public key, being a
public key, is widely shared.

5.1 Key derivation overview

Key derivation is the process that takes your and and produces the keys
you need to decrypt your data and to sign in to the 1Password server. It’s described more fully in “Key
derivation.”

Salt

A cryptographic salt is a non-secret value that is added to either an encryption process or
hashing to ensure that the result of the encryption is unique. Salts are typically random and
unique.

Your will be trimmed and normalized. A non-secret is combined with your email
address and other non-secret data using to create a new
32-byte salt.

Your and the are passed to PBKDF2-HMAC-SHA256 with 650,000 iterations.
This results in 32 bytes of data, which are combined with the result of processing your .

Your is combined with your non-secret account ID and the name of the derivation scheme by
HKDF to produce 32 bytes of data. This will be XORed with the result of processing your

.

Advanced Encryption Standard (AES)

Galois Counter Mode (GCM)

Chosen Ciphertext Attacks (CCA)

8

key encryption key (KEK) account password Secret Key

account password Secret Key

account password salt
9 hash-based key derivation function (HKDF)

account password salt
Secret Key

Secret Key
account

password

file:///Users/megan/Projects/security-design/docs/deepKeys.html#sec:keyderiv
file:///Users/megan/Projects/security-design/docs/deepKeys.html#sec:keyderiv
file:///Users/megan/Projects/security-design/docs/modernauth.html
file:///Users/megan/Projects/security-design/docs/sharedVaults.html

The resulting 32 bytes of material (derived from both your and) are your
 which is used to encrypt the key (your private key) that’s used to decrypt the

keys (vault keys) that are used to encrypt your data.

By encrypting copies of vault keys with an individual’s public key, it becomes easy to securely add an
individual to a vault. This secure sharing of the vault key allows us to securely share items between
users.

5.2 A first look at key sets

We organize the public/private key pairs together with the symmetric key that’s used to encrypt the
private key into key sets. Our make extensive use of objects.

Figure 5.2: A key set is a collection of JWK keys together with an identifier and information about what other key set is used to encrypt it.

A common type of key set will have the structure listed in Figure 5.2. When we speak of encrypting a
, we generally mean encrypting the symmetric key that’s used to encrypt the private key.

 are fairly high-level abstractions; the actual keys within them have a finer structure that
includes the specifications for the algorithms, such as initialization vectors. Symmetric encryption is
AES-256-GCM, and public key encryption is RSA-OAEP with 2048-bit moduli and a public exponent of
65537.

Story 4: A day in the life of an item being created

In the beginning there was the vault, but it was empty and had no key.

And Alice’s 1Password client called out to the cryptographically secure random number
generator, “Oh, give me 32 bytes,” and there were 32 random bytes. These 256 bits were called
the “vault key.”

And the vault key was encrypted with Alice’s public key, so only she could use it; a copy of the
vault key was encrypted with the public key of the Recovery Group, lest Alice become forgetful.

Alice went forth and named things to become part of her vault. She called forth the PIN from her
account on the photocopier and added it to her vault. The photocopier PIN, both its details and
its overview, were encrypted with the vault key.

And she added other items, each of its own kind, be they Logins, Notes, Software Licenses, or
Credit Cards. And she added all of these to her vault, and they were all encrypted with her vault
key. On the Seventh day, she signed out.

And when she signed in again, she used her account password, and 1Password used her Secret
Key, and together they could decrypt her private key. With her private key she decrypted the vault
key. And with that vault key she knew her items.

And Alice became more than the creators of 1Password, for she had knowledge of keys and
items which the creators did not. And it was good.

Once a vault has been created, it can be securely shared by encrypting the vault key with the recipient’s
public key.

account password Secret Key
Account Unlock Key (AUK)

key sets JSON Web Key (JWK)

key
set

Key sets

5.2.1 Flexible, yet firm

Since the right choices for the finer details of the encryption schemes we use today may not be the right
choices tomorrow, we need some flexibility in determining what to use. Therefore, embedded within the

 are indications of the ciphers used. This would allow us to move from RSA with 2048-bit keys
to 3072-bit keys, relatively easily when the time comes, or to switch to

 at some point.

Because we supply all the clients, we can manage upgrades without enormous difficulty.

Story 5: Days in the life of an algorithm upgrade

Setting Some time in the not-so-distant future.

Day one “Hmm,” says Patty. “It looks like 2048-bit RSA keys will have to be phased out. Time we
start transitioning to 3072-bit keys.”

The next day We ensure all our clients are able to use 3072-bit keys if presented with them.

Some weeks later We release clients that use 3072 bits when creating new public keys. (Public
keys are created only when a new account is created or a new Group is created within a team.)

Further along ”We should go further and start replacing the older keys.” (Of course, we can’t
replace anyone’s keys, as we don’t have them.)

After some development We issue updated clients that generate new public keys, and anything
encrypted with the old key will be re-encrypted by the client with the new key.

Time to get tough We can have the server refuse to accept new data encrypted with the older
keys. The server may not have the keys to decrypt these key sets, but it knows what encryption
scheme was used.

More bad news on 2048-bit keys We learn that even decrypting stuff already encrypted with the
older keys turns out to be dangerous. [Editor’s Note: This is a fictional story.] We need to prevent
items encrypted with 2048-bit keys from being trusted automatically.

Drastic measures If necessary, we can issue clients that will refuse to trust anything encrypted
with the older keys.

Building in the flexibility to add new cryptographic algorithms while limiting the scope of downgrade
attacks isn’t easy. But as illustrated in Story 5, we’re the single entity responsible for issuing clients and
managing the server, so we can defend against downgrade attacks through a combination of client and
server policy.

8. The overviews and the details are encrypted with the same key. This is a change from the design of
the OPVault 1Password data format described in OPVault Design (AgileBits 2015).

9. The reasons for binding your encryption key tightly with your email address are discussed in
“Restoring a user’s access to a vault.”.

key sets
Ellipic Curve Cryptography

(ECC)

file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-AB:OPVaultDesign
file:///Users/megan/Projects/security-design/docs/restore.html#restore

6 How vaults are shared securely

Sharing items among members of the same 1Password account happens at the vault level. This allows
those members to share and mutually maintain sets of items. Through the magic of public key
encryption, this happens without the 1Password service (or us, its operators) ever having the keys or
secrets necessary to decrypt shared data.

As described in “How vault items are secured,” each user has a personal that includes a
public/private key pair, and each vault has its own key used to encrypt the items within that vault. At the
simplest level, to share the items in a vault, one merely needs to encrypt the items with the public key of
the recipient.

Story 6: A day in the life of a shared vault

Alice is running a small company and would like to share the office Wi-Fi password and the
keypad code for the front door with the entire team. Alice will create the items in the Everyone
vault, using the 1Password client on her device. These items will be encrypted with the vault key.
When Alice adds Bob to the Everyone vault, Alice’s 1Password client will encrypt a copy of the
vault key with Bob’s public key.

Bob will be notified that he has access to a new vault, and his client will download the encrypted
vault key, along with the encrypted vault items. Bob’s client can decrypt the vault key using Bob’s
private key, giving him access to the items within the vault and allowing Bob to see the Wi-Fi
password and the front door keypad code.

The 1Password server never has a copy of the decrypted vault key, and is never in a position to
share it. Only someone with that key can encrypt a copy of it. Thus, an attack on our server could
not result in unwanted sharing.

6.1 Getting the message (to the right people)

It’s important that the person sharing a vault shares it with the right person, and uses the public key of
the intended recipient. One of the primary roles of the 1Password server is to ensure that public keys
belong to the right email addresses.

Dangerous bend

1Password does not attempt to verify the identity of an individual. The focus is on tying a public
key to an email address. Internally we bind a key set to an email address, but we have no
information about who controls that email address.

Connecting users with their keys as they register, enroll new devices, or simply sign in is a fundamental
part of the service. How this happens without giving us the ability to acquire user secrets is the subject
of the next section.

key set

file:///Users/megan/Projects/security-design/docs/secureItems.html#secureItems
file:///Users/megan/Projects/security-design/docs/secureItems.html
file:///Users/megan/Projects/security-design/docs/share.html

7 How items are shared with anyone

As described in “How vaults are shared securely,” sharing items among members of the same
1Password account happens at the vault level But it’s also possible to securely share a copy of
individual items with individuals who are not members of the same 1Password account or even
1Password users at all. The mechanism, however, is entirely different, largely because the recipient can’t
be expected to in the same way as a 1Password user would, and the recipient doesn’t
have a public key the sender can use.

The 1Password item sharing service allows a 1Password user to make a copy of an item available to
anyone, whether the recipient is a 1Password user or not. In this section we’ll often follow user
documentation and the user interface in calling this “sharing,” but we we’ll also write in terms of sending
and receiving to help accentuate the distinction between this mechanism and the sharing of vaults.

7.1 Overview

There are six components to the overall picture.

1Password client The 1Pasword application with which users directly interact. This includes not only
applications such as the 1Password iOS app, but also the web client and browser extensions acting as a
client. We we’ll sometimes refer to this as “the sender’s client.”

1Password service The principle 1Password service.

Item sharing servive The share service which, among other things, will store the encrypted shared
copies.

Item sharing client The share web client. It operates in the recipient’s browser and is downloaded from
the item sharing service. We’ll sometimes refer to this as “the recipient’s client.”

Sender The human interacting with their 1Password client.

Recipient The human interacting with the item sharing client.

Figure 7.1 illustrates which components talk to which. In particular, the 1Password client communicates
only with the sending user and 1Password service. The 1Password server communicates with the item
sharing service. Item sharing client communicates only with the receiving user and the item sharing
service. And the sender will communicate directly with the recipient outside of 1Password using a
communication channel of their choice. Additionally, the figure shows the encrypted copy of the item
and key, and that their decryptions follow different paths.

authenticate

https://agilebits.github.io/security-design/sharedVaults.html#sharedVaults
https://agilebits.github.io/security-design/sharedVaults.html
https://agilebits.github.io/security-design/deepKeys.html

Figure 7.1: Item sharing, key, and token flow. The solid purple arrows show the flow of the encrypted item, solid red arrows show the flow
of the encryption key, and dashed green arrows show the flow to the retrieval token. “IS Server” and “IS Client” refer to the item sharing

server and client. Item encryption and decryption can only occur where the key and the item are together, which is at the clients. The share
token is used for authenticating a download of the encrypted item by the item sharing server.The 1Password and item sharing servers

never have access to the share key. This figure doesn’t include flow of audit and share status information.

7.2 1Password client

The sender’s client needs to do two things: create a share link and upload an encrypted copy of the
shared item to the 1Password service. The sender also needs to transmit the share link to the recipient
independently of 1Password services.

7.2.1 Making a share link

The share link looks something like what is shown in Figure 7.2.

Figure 7.2: A share link is a URL that contains in its fragment information required to identify the shared item, along with the key necessary
to decrypt it.

At a high level creating the share link involves five steps performed by the sender’s client.

1. Obtain the user item to be shared and decrypt it. The item must be something the sender can read
and decrypt, and the sender must also have other appropriate permissions for the vault.

2. Create a public unique identifier, a retrieval token, and an encryption for this share.
3. Encrypt a copy of the item with the share key.
4. Upload the encrypted data to the share service along with the identifier and sender chosen access

options.
5. Present the sender with the share link.

As always, the key generation, encryption, and creation of the share link are performed entirely on the
sender’s client. The 1Password service never has access to the decryption keys nor the decrypted item.

7.2.2 Client’s first steps

The requirements of step 1 involve a number of mechanisms. The requirement that the sender be able to
decrypt the item is cryptographically enforced, as they would never be able to re-encrypt anything they
cannot decrypt. Additionally, the client will only present the user the option to share if the sender has the
appropriate vault permission (detailed in the description of the upload step).

Figure 7.3: 1Password client gets information from sender

The sender is presented with certain configuration options including whether recipients need to
demonstrate control of certain email addresses, the required email addresses if any, the amount of time
the shared item should be available, and how many times the recipient can retrieve the item. These
options will play a role in the retrieval process. The client will check whether the options are consistent
with account policy at this time.

7.2.3 Encryption and key generation

In step 2, the client generates 32 random bytes to be the share secret. The 32-byte encryption key, the
16-byte public , and the 16-byte retrieval token are derived from the
share secret using as detailed in Figure 7.4.

Figure 7.4: Creating shared IDs and secrets. The client generates a share secret, from which it derives an encryption key, a public UUID,
and a retrieval token.

The first part of step 3 involves making a copy of the item to be shared. The copy is identical to the one
remaining in the vault except that attachments and password history are removed. The existence of
attachments and password history in an item may not always be salient to the sender, and so those are
excluded from the copy. The copy is then encrypted using the identical methods used for encrypting
items in vaults.

7.2.4 Uploading the share

In step 4, the client uploads the encrypted item along with the public and the retrieval token to the
1Password service. The service will reject the request unless sending items is allowed by account policy;
the recipient specification is consistent with account policy; and the sender has read, reveal password,
and send item permissions for the vault containing the original item. The share secret, which contains

Universally Unique Identifier (UUID)
hash-based key derivation function (HKDF)

UUID

the the share key, is never passed to the service. Additionally, the UUID of the vault and specific item are
uploaded, along with the version number of the vault. This metadata allows the user and vault
administrators to manage shares. Account policies can specify whether share retrievals must be tied to
recipient email addresses and whether those are limited to specific email domains.

The configuration options selected by the sender are also part of this upload. The server will check
whether they’re consistent with account policy (whether retrieval is restricted to people with particular
email addresses) and whether the email addresses conform to that policy. Additionally, the server will
ensure the availability time requested by the client doesn’t exceed server or account policy. Upon
success, the server responds with the non-fragment part of the share link. In current configurations, this
is https://share.1password.com/s .

After a successful upload, the client will present the user with the share link (step 5).

Figure 7.5: 1Password client presents item sharing share link.

The client appends the share secret (base64 encoded) as a fragment to the URL returned by the server.
The fragment in the share link contains the share secret from which the retrieval token and encryption
key are derived, and therefore must not be transmitted to intended recipients via the 1Password service.

Dangerous bend

The share link places the identifier and the decryption key within a URL fragment. In general
fragments are never transmitted and are used solely by the clients as additional information on
handling the retrieved resource. By putting the share secret in the fragment, we not only prevent
ways in which the secret could be exposed, but we also make it clear this is a purely local secret.

Discussion 1: Fragment abuse?

At a superficial level, it may appear that placing the item identifier within a fragment is a minor
abuse of the standards defining URLs. The non-fragment part of a URL is supposed to fully
identify the resource to be retrieved, while that portion of our share links only identifies the
1Password share service. Fragments, however, are also intended to provide information to the
client about handling or further processing the retrieved resource, and this is exactly how we use
the fragment. Thus our fragment, even with its inclusion of a resource identifier, may be closer to
the spirit of the standards than would be including it within the path or a query string. In any
event, we don’t anticipate the IETF to send an enforcement squad to our door for our use of
fragments.

7.2.5 Sharing the share link

The sender needs to communicate the share link to the recipient, and this has to happen out of band.
That is, the unencrypted share link – with its secrets – must never be made available to either the
1Password or item sharing services. This ensures the servers never have access to both encrypted user
data and the keys needed to decrypt them.

This leaves it to the sender to choose how to get the share link to the intended recipients. The
1Password client may provide as a convenience a way to launch a variety of sharing mechanisms, such
as email or messaging tool, on the sender’s system.

7.3 Server to server

The 1Password service is responsible for passing the share to the item sharing service. The 1Password
service communicates with the item sharing service using our inter-service communication
architecture; the item sharing service is hosted at share.1password.com and is a separate service
despite being in a subdomain of 1password.com .

Dangerous bend

The item sharing server itself is hosted in the European Union, despite the .com top-level domain.
This same EU-based service is used by all 1Password servers, including those in the United
States and Canada. This way, recipient email addresses – as they are passed from 1Password
server to item sharing server – never leave the European Union.

The 1Passsword server passes to the item sharing service what it received from the sender’s client,
along with information about the user and account, it adds its own timestamp, and the
number of seconds the item is to be available to the current time to create an expiry time.

7.3.1 Audit and status queries

The 1Passsword server has the ability to query the item sharing service about the state of existing
shares. The queries identify items by their account, vault, and item . As discussed in far too much
detail in Discussion 2, UUIDs are never expected to be secret, so guaranteeing the requests are
authorized cannot depend on knowledge of those UUIDs. To ensure only authorized individuals are able
to see the status or audit events regarding a share:

These queries are performed over the same mutually authenticated channel not described in Note
11.
The 1Passsword server ensures the account identifier in the query is honest.
The 1Passsword server has the responsibility to ensure the authenticated user creating the request
is authorized to make such requests for that account.

7.4 Share pickup

When the recipient follows a share link, their browser will fetch the page at
 https://share.1password.com/s . The browser won’t transmit the fragment containing the share
secret. The page contains a item sharing web client, software that will run within the user’s browser on
their own device. The item sharing client running within the user’s browser is, however, able to see and
make use of the fragment portion of the share link, and thus will have the share secret.

The client uses the share secret as detailed in Figure 7.4 to derive three things:

Share key The share key is the symmetric key that was used to encrypt the item and is necessary to
decrypt it. This key is never made available to any 1Passsword service.

Share token The share retrieval token is a secret that is shared between the user and the share service.

Share UUID The share is a non-secret record locator used by the share service to locate the item
in its data store.

10

authenticated

UUID

UUID

The item sharing client will send a request to the share service requesting the share by UUID. The share
token is passed to the item sharing server in an HTTP header OP-Share-Token , as is the norm for
bearer tokens. Neither the share secret nor the share key are ever sent to the service.

Discussion 2: Knowledge of identifiers should never prove anything

There’s some duplication between the UUID and the share token. The share token is sufficient to
uniquely identify the share, and knowledge of the UUID offers the same proof of receipt of the
share link as knowledge of the share token does. The fact that we don’t combine both of those
functions into a single value provides an opportunity to explain a design principle throughout
1Passsword.

In the United States, Social Security Numbers (SSNs) were never designed to be secrets they
were unique identifiers. But in the second half of the 20th century, banks offering services by
telephone began to take knowledge of a caller’s SSN as proof of identity. Most systems
continued to treat SSNs as non-secrets for a very long time, and changing those systems has
proved to be enormously difficult. Credit card numbers followed a similar story with the advent of
telephone shopping.

Co-opting knowledge of account or personal identifiers for authentication must have seemed like
an easy strategy at the time. We’re still plagued with the consequences half a century later.

Throughout the design of 1Passsword we have insisted that knowledge of a UUID must never be
used as an authentication mechanism. This not only gives us the freedom to design protocols in
which UUIDs never have to be kept secret, it also means we don’t have to worry about future
uses. At the moment, share tokens and share UUIDs pass through the same hands and over the
same channels, but there may be a time when we use or log UUIDs in ways that would be
inappropriate for share tokens or require new security properties of share tokens. By holding
ourselves to our design pattern now, we prevent a substantial category of security bug in the
future.

The item sharing service will first check the validity and existence of the . A malformed or unknown
UUID will result in an error response to the item sharing client. If the UUID is valid, it then compares
the share token with what it has stored. If no further is required, it returns the encrypted
item to the item sharing client, which can then use the share key to decrypt the item and render it for the
recipient.

The item sharing server creates and stores an audit event record for a successful access. The audit
record includes identifiers for the share and the accessor as well as the IP address and HTTP user agent
of the and item sharing client. For business accounts, audit events are available to the mangers of the
account from which the item was sent.

7.4.1 Additional authentication

In all cases, the item sharing client needs to provide the server with the share token and will need have
the share key to be able to decrypt the share, but there may be additional authentication requirements.
At the present time, additional is based on control of email addresses.

In the case that email is required, the
share recipient (or their client) needs to either prove
they can read email sent to the specified email
address or prove it has previously offered such
proof. In the first case, the share recipient is offered
to have a verification email sent to the address
associated with the share by the sender. The email
will contain a randomly chosen six-digit verifier the
user can enter into the item sharing client, which will
send the item to the item sharing server.

After successful email verification, the server will
issue an accessor token to the client, which the
client will write to its local storage. For future share

UUID
11

authentication

authentication

authentication

Figure 7.6: Item sharing client item view.

retrievals, the client can provide this access token
to show that it has previously succeeded with email
verification.

7.4.2 Client analytics

The item sharing client may offer its user buttons for
signing up for 1Password, saving the item in
1Password, or accepting an invite to join the team
from which the item was sent. Clicking those
buttons will trigger a request to the item sharing
server which is used to keep count of such clicks.
Only overall and aggregate counts of the triggering
events are saved server side.

7.5 Caveats

The item sharing service is intended to share copies
of items with individuals who are not members of the 1Passsword family or team in which the original
item resides. Within team or family accounts, sharing offers security properties which sharing via item
sharing cannot.

Within an account, a relationship can be established between the personal of the members of
accounts. But when sharing outside of an account, there’s no preestablished relationship that can be
used to identify the sender or the recipient. For this reason, item sharing senders and recipients need to
take more care to verify independently that the other party is who they say they are.

When the recipient is given a share link through some channel, 1Passsword can’t tell them whether the
person sending the share link is the person who created the share link. Similarly, email
only proves the recipient had the ability to read an email message sent to that address at some time.
Without the shared item remaining a single item shared within an account, there’s far less ability to
manage, control, or monitor use of that item as there would be within a team.

The identification of the item shared is entirely under the control of the sending client and can’t be
enforced by the 1Passsword server. A sender can evade the policy controls about which items they are
allowed to send in much the same way a user can evade other client enforced permissions, such as
having the ability to reveal a password. Thus a malicious user with the skills to modify their own client
can share any item they’re capable of decrypting by telling the 1Passsword server that some other
permissible item was shared.

In practice, the channels over which the share link is transmitted lack the ideal security properties but
they may well be sufficient for the needs at the time. Item sharing is safer and more convenient than the
practical alternatives available to most users. In particular sharing with item sharing offers the ability to:

Set an expiry time on the share.
Limit the number of times it can be retrieved from the 1Passsword server
Restrict retrieval to holders of a specific email address.
Track what has been shared.
Have policies stating what’s allowed to be shared.

These abilities create a substantial security improvement against the practice of simply sharing
unencrypted data over the same channels one would use for sending the share link.

We offer the item sharing service because it’s enormously more secure than other ways people find to
share 1Passsword items outside their family or team. After all, any 1Passsword user in a position to
decrypt an item already has the ability to make a copy of its data and transmit that in any form of their
choosing. Item sharing can’t prevent insecure sharing, but it makes it easier for people and organizations
to share copies of secrets in a more secure manner than they may otherwise.

10. As yet undocumented, but it involves mutual authentication independent of TLS.

11. All comparisons of secrets, including this one, are performed using constant time comparison
methods.

key sets

authentication

8 A deeper look at keys

It doesn’t matter how strong an encryption algorithm is if the keys used to encrypt the data are available
to an attacker or easily guessed. This section describes not only the details of the encryption algorithms
and protocols used, it also covers how and where keys are derived, generated, and handled.

Here we provide details of how we achieve what is described in “How vault items are secured” and “How
vaults are shared securely”. It’s one thing to assert (like we have) that our design means we never learn
your secrets, but it’s another to show how this is the case. As a consequence, this section will be
substantially more technical than others.

8.1 Key creation

All keys are generated by the client using

. These keys are ultimately encrypted with keys derived from user secrets.
Neither user secrets nor unencrypted keys are ever transmitted.

Table 8.1: Random number generators used within 1Password by platform. The Browser platform refers to both the web client and to the
1Password X browser extension. “CLI” refers to the command line interface, op.

Platform Method Library

iOS/macOS SecRandomCopyBytes() iOS/OS X Security

Windows CryptGenRandom() Cryptography API: NG

Browser getRandomValues() WebCrypto

Android SecureRandom() java.security

CLI crypto/rand Go standard crypto library

Dangerous bend

The public/private key pairs are generated using WebCrypto’s crypto.generateKey as an RSA-
OAEP padded RSA key, with a modulus length of 2048 bits and a public exponent of 65537.

Dangerous bend

The secret part of the Secret Key is generated by the client as we would generate a random
password. Our password generation scheme takes care to ensure each possible character is
chosen independently and with probability equal to any other. Secret Key characters are drawn
from the character set {2-9, A-H, J-N, P-T, V-Z}.

Dangerous bend

An Elliptic Curve Digital Signature Algorithm (ECDSA) key is also created at this time. It’s not used
in the current version of 1Password, but its future use is anticipated. The key is generated on
curve P-256.

8.2 Key derivation

For expository purposes, it’s easiest to work backwards. The first section will discuss what a typical
login looks like from an already enrolled user using an already enrolled client, as this involves the
simplest instance of the protocol.

Cryptographically Secure Pseudo-Random Number

Generators (CSPRNGs)

file:///Users/megan/Projects/security-design/docs/secureItems.html#secureItems
file:///Users/megan/Projects/security-design/docs/sharedVaults.html#sharedVaults
file:///Users/megan/Projects/security-design/docs/sharedVaults.html#sharedVaults
https://developer.apple.com/documentation/security/secrandomcopybytes(_:_:_:)
https://docs.microsoft.com/en-us/windows/desktop/api/Bcrypt/nf-bcrypt-bcryptgenrandom
https://w3c.github.io/webcrypto/
https://developer.android.com/reference/java/security/SecureRandom.html
https://golang.org/pkg/crypto/rand/
file:///Users/megan/Projects/security-design/docs/share.html
file:///Users/megan/Projects/security-design/docs/passkeySSO.html

Figure 8.1: The AUK is derived from the account password, ; Secret Key, k , and
several non- secrets including the account ID, , and a salt, .

8.2.1 Deriving two keys from two secrets

As discussed in “Account password
and Secret Key,” 1Password uses

so data we store cannot be used in
brute-force cracking attempts
against a user’s account password.
The two secrets held by the user are

their and
.

From those two user secrets the
client needs to derive two
independent keys. One is the key
needed to decrypt their data, the
other is the key needed for

. We’ll call the key needed to decrypt the data encryption keys (and, in particular, the

user’s private key) the , and the key that’s used as the secret for
authentication .

The processes for deriving each of these are similar, but involve different in the key derivation
function. A user will have a salt used for deriving the and a different salt used for deriving .

In both cases, the secret inputs to the key derivation process are the user’s and
. Non-secret inputs include , algorithm information, and the user’s email address.

8.2.2 Preprocessing the account password

Before the user’s account password is handed off to the slow hashing mechanism, it undergoes a
number of preparatory steps. The details and rationale for those are described here.

 are first stripped of any leading or trailing whitespace (Step 3, Figure 8.1).
Whitespace is allowed within the account password, but because leading or trailing whitespace may not
be visible to the user, we want to avoid creating an account password with spaces they’re unaware of.
Then it’s normalized (Step 4) to a UTF-8 byte string using

. By normalizing these strings before any further processing, we allow for
different byte sequences that may encode the same Unicode character to be treated identically. This is
discussed in greater depth in Discussion 9.1.

Discussion 9.1: Non-ASCII passwords

People naturally want to use passwords that involve characters other than the 7-bit US-ASCII
printable characters. Yet doing so poses difficulties that simply supporting Unicode doesn’t
answer. Unicode normalization goes a long way toward addressing these difficulties.

The need for Unicode normalization can be exemplified by considering how the glyph “Å” may be
encoded when it’s typed on some devices. It can be encoded in (at least) three different ways: It
might be the byte sequence 0x212B, or 0x00C5, or 0x0041030A. Exactly how it’s encoded and
passed to 1Password (or any software) depends on the often arbitrary details of the user’s
keyboard, operating system, and settings. 1Password itself has no control over what particular
sequence of bytes it will receive, but the user who uses “Å” in their password needs it to work
reliably.

Normalization ensures that whichever particular UTF encoding of a string is passed to 1Password
by the user’s operating system will be treated as identical. In the case of “Å”, the normalization
we have chosen (NFKD), will convert any of those three representations to 0x0041030A.

Dangerous bend

Normalization does not correct for homoglyphs. For example, the letter “a” (the second letter in
“password”) in the Latin alphabet will never be treated the same as the visually similar letter “а”
(the second letter in “пароль”) in the Cyrillic alphabet. Thus, despite our use of normalization,
users still have to exercise care in the construction of account passwords that go beyond the
unambiguous 7-bit US-ASCII character set.

two-secret key derivation (2SKD)

account password Secret
Key

authentication

Account Unlock Key (AUK)
SRP-

salts
AUK SRP-

account password
Secret Key salts

Account passwords

Unicode Normalization Form Compatibility
Decomposition (NFKD)

file:///Users/megan/Projects/security-design/docs/apsk.html#apsk
file:///Users/megan/Projects/security-design/docs/apsk.html#apsk

Figure 8.2: The AUK is represented as a JSON Web Key (JWK)
object and given the distinguished key ID of mp.

8.2.3 Preparing the salt

Next, the 16-byte is stretched using and salted with the
lowercase version of the email address (Step 5). The reason for binding the email address tightly with
the cryptographic keys is discussed in “Restoring a user’s access to a vault.”

8.2.4 Slow hashing

The normalized account password is then processed with the slow hash PBKDF2-HMAC-SHA256 along
with a .

Dangerous bend

The choice of PBKDF2-HMAC-SHA256 as our is largely a function of there being
(reasonably) efficient implementations available for all our clients. While we could have used a
more modern password hashing scheme, any advantage of doing so would have been lost by
how slowly it would run within JavaScript in most web browsers.

Because key derivation is performed by the client (so the server never needs to see the
password) we are constrained in our choices by our least efficient client. The Makwa password
hashing scheme , however, is a possible road forward because it allows some of the
computation to be passed to a server

In the current version, there are 650,000 iterations of PBKDF2. Extrapolating from a cracking challenge
we ran, we estimate it costs an optimized attacker working at scale between 30 and ~40 US dollars to
make guesses against PBKDF2-SHA256 with 650,000 iterations.

8.2.5 Combining with the Secret Key

The , treated as a sequence of bytes, is
used to generate an intermediate key of the same
length as that derived from the .
This is done using , using the raw Secret Key
as its entropy source, the account ID as its salt, and
the format version as additional data.

The resulting bytes from the use of HKDF are
XORed with the result of the PBKDF2 operations.

This is then set with the structure of a object
as illustrated in Figure 8.2.

8.2.6 Deriving the authentication key

The process of deriving the client-side secret used for authenticating with the 1Password
server is nearly identical to the procedure described above for deriving the . The only difference is
an entirely independent is used for the PBKDF2 rounds. This ensures the derived keys are
independent of each other.

The 32-byte resulting key is converted into a for use with . We
use the JSBN library in the browser, and the tools from OpenSSL for all other platforms.

The astute reader may have noticed the defender needs to perform 1,300,000 PBKDF2 rounds while an
attacker (who has managed to obtain the) only needs to perform 650,000 PBKDF2 rounds
per guess, thus giving the attacker a 1-bit advantage over the defender in such an attack.

The sequence described above, however, in which the defender needs to derive both keys, rarely
happens. In most instances, the will be encrypted with the (or by some other key that’s
encrypted with the AUK) and stored locally. Thus the defender needs to derive the AUK only. The client
needs to go through both derivations only at original sign-up or when enrolling a new client.

8.3 Initial sign-up

To focus on the initial creation of keys and establishment of mechanisms, this section
assumes the enrolling user has been invited to join a team by someone authorized to invite them.

salt hash-based key derivation function (HKDF)
12

salt

slow hash

13

14

15

Secret Key

account password
HKDF

JWK

authentication
AUK

salt

BigNum Secure Remote Password (SRP)

Secret Key

SRP- AUK

authentication

file:///Users/megan/Projects/security-design/docs/restore.html#restore

When the invitation is created, the server generates an account ID and knows which team someone has
been invited to join and the type of account that’s being created. The server is given the new user’s email
address and possibly the new user’s real name. An invitation is
created to uniquely identify the invitation, and known to the team administrator. An invitation token is
created by the server and not made available to the administrator. Other information about the status of
the invitation is stored on the server.

The user is given (typically by email) the invitation along with the invitation token, and uses them to
request invitation details from the server. If the UUID is for a valid and active invitation and the provided
token matches the invitation’s token, the server will send the invitation details, which include the account
name, invited email address, and (if supplied by the inviter) real name of the user. If the server doesn’t
find a valid and active invitation for that UUID, it returns an error.

The client will gather and compute a great deal of information, some of which is sent to the server.

Table 8.2: Symbols used to indicate status of different data client creates during signup.

Symbol Meaning

Generated randomly

Key-like thing

Encrypted

Uploaded

1. Generate
2. Compute AUK

1. Generate encryption key salt

2. Derive from encryption , , and Secret Key as described in “Key
derivation.”

3. Create encrypted account key set
1. Generate private key
2. Compute public key (from private key)
3. Encrypt private part with AUK
4. Generate key set
5. Include key set format

4. User information
1. Given name
2. Family name
3. Avatar image
4. Email address

5. Device information
1. Generate device UUID
2. Operating system (if available)
3. User agent (if applicable)
4. Hostname (if available)

6. Construct verifier
1. Generate authentication salt
2. Derive SRP- from account password, Secret Key, an authentication salt
3. Computer SRP verifier from SRP-

7. Send to the server everything marked

8.3.1 Protecting email invitations

Invitations are sent by email, and suffer the security limitations of email. Administrators are strongly
encouraged to verify independently (by means other than email) the intended recipients have enrolled.

8.4 Enrolling a new client

When enrolling a new device, the user will provide the client with the add-device link (possibly in the
form of a QR code) and their . The add-device link is generated at the user’s request
from an already enrolled client and includes the domain name for the team, the user’s email address, and
their .

The link uses the custom schema onepassword: with a path of //team-account/add and a query
string with fields email , server , and key . An example is shown in Figure 8.3.

Universally Unique Identifier (UUID)

UUID

Secret Key

AUK salt account password

UUID

SRP

account password

Secret Key

Figure 8.3: An add link contains the email address, team domain, and Secret Key.

This new client doesn’t have its nor its key derivation parameters so requests them from the server.
It’s able to generate its device information and create a device .

Figure 8.4: Example response from server to auth request. The Secret Key is often referred to as “Account Key” internally.

The client initiates an auth request to the server, sending the email address and device . A typical
server response looks similar to what’s shown in Figure 8.4.

After the client has the used for deriving its secret, it can compute its from
that salt, the , and the . During authentication, neither the client nor server
reveals any secrets to the other, and after authentication is complete, our own transport layer encryption
is invoked on top of what is provided by . In the discussion here, however, we’ll ignore those two
layers of transport encryption and present the data as seen by the client and server after both transport
encryption layers have been handled.

After successful , the client requests its encrypted personal from the server. If the
client has successfully authenticated, the server allows it to fetch the key sets associated with the
account. The personal key set has the overall structure shown in Figure 8.5.

Figure 8.5: Overview of personal key set. The value of encryptedBy here indicates the encrypted symmetric key is encrypted with the
Account Unlock Key.

This contains an encrypted private key, the associated public key, and an encrypted symmetric key
that’s used to encrypt the private key. The encrypted symmetric key is encrypted with the , using
the parameters and that are included with the encrypted symmetric key as shown in Figure 8.6

Figure 8.6: The encrypted symmetric key is encrypted with the AUK, which in turn is derived using the salt in the p2s field, and using the
methods indicated in the fields alg and p2c. The encrypted symmetric key itself is encrypted using AES256-GCM.

The details of the public and private keys are illustrated in Figure 8.7.

salts
UUID

UUID

salt authentication SRP-
account password Secret Key

TLS

authentication key set

AUK
salt

Figure 8.7: The public/private parts are specified using JWK.

8.5 Normal unlock and sign-in

When you unlock and and sign in to 1Password from a client that has previously signed in, the client
may have everything it needs locally to compute its and to compute or decrypt . The client
may already have the , encryption parameters, and its encrypted personal .

After the user enters a correct and the client reads the , it computes the
, decrypts the user’s private key, then decrypts any locally cached data. Depending on the

completeness of the cached data, the client may be able to function offline.

12. HKDF places no security requirements on its salt, which may even be a constant or zero.

13. Pornin (2015)

14. Accounts created prior to January 27, 2023 and have not changed their account password or Secret
Key since this date, will use a lower iteration count. The iteration count can be updated to the
current standard value by changing either the account password or Secret Key.

15. Goldberg (2021)

16. The use of the word “may” here reflects the fact that different 1Password clients take different
approaches to what they store locally and what they recompute. The current version of the web
client, for example, caches much less data locally than the mobile clients do.

16 AUK SRP-
salts key set

account password Secret Key
AUK

file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-pornin:MAKWA
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-Goldberg21:crackingupdate

9 Unlock with a passkey or single sign-on

As an alternative to the sign-in method described in chapter “A deeper look at keys,” it’s also possible to

sign in to 1Password with a or provider.

Anyone can create an account that uses a for . When you set up an account this

way, you provide your account’s passkey to unlock 1Password instead of an and
.

Companies that use 1Password can configure unlock with for groups in their organization. When a
user signs in with SSO, they sign in with the username, password, and other factors
required by their SSO provider instead of using their and to authenticate
to 1Password. 1Password accepts proof of authorization from the SSO provider as authentication.

9.1 Unlocking without an account password

We designed and unlock to work similarly to signing in with an and

 in that both methods set up a process that uses in a similar
way. On devices where a user signs in with a passkey or SSO, 1Password clients store a .
Each device key is uniquely and randomly generated, and never leaves the device on which it was
created. To enroll a new device on a passkey or SSO-enabled account, the user must first
then authorize the new device using a previously enrolled device.

Device key

A cryptographic key stored on a 1Password client that’s using single sign-on (SSO). It’s used to
decrypt the credential bundle it receives from the server upon successful sign in.

With and unlock, your first device randomly generates an and
. They’re stored on our servers, encrypted by the device key that’s only stored on the device that

created it. This combination of the SRP- and AUK is called a .

Credential bundle

Consists of a randomly generated SRP- and AUK, it’s used to sign in to 1Password with single
sign-on (SSO). It’s encrypted by the device key and stored on 1Password servers.

Figure 9.1: Passkey sign in. The solid purple arrows illustrate the authorization of a device when a user performs a passkey sign-in, green
arrows illustrate the return of the credential Bundle to the user, and dashed golden arrows illustrate the user’s authentication with SRP to

use 1Password.

passkey single sign-on (SSO)

passkey authentication

account password
Secret Key

SSO
authentication

account password Secret Key

passkey SSO account password

Secret Key Secure Remote Password (SRP)
device key

authenticate

passkey SSO SRP- Account Unlock Key
(AUK)

credential bundle

https://agilebits.github.io/security-design/deepKeys.html#deepKeys
https://agilebits.github.io/security-design/deepKeys.html
https://agilebits.github.io/security-design/revoke-access.html

Figure 9.2: Single sign-on sign in. The solid purple arrows indicate a user signing in to their SSO provider. The solid red arrow shows the
authorization the SSO provider sends to the 1Password server. The green arrows show the credential bundle being returned to the user.

The dashed golden arrows show the user authenticating with SRP to use 1Password. This diagram is based on the OpenID Connect SSO
authorization flow. For some SSO providers, the destinations of certain arrows may be slightly different.

9.1.1 Authorization and the credential bundle

Authorization to obtain the happens as follows:

Passkey unlock The server your and authorizes you.

SSO unlock During sign-in, the provider tells 1Password servers you’ve successfully
authorized. Typically, the SSO provider returns an authorization token to your device, which forwards
it to the 1Password server.

In return for a valid proof of authorization, our servers return a encrypted with the
. After the 1Password client decrypts the and with the device key, it

authenticates as described in “A deeper look at keys. After successful sign-in with a passkey or an SSO
provider, 1Password behaves identically to when an and are used.

9.2 Linked apps and browsers

After you’ve successfully enrolled with a or , the app or browser you use is linked. The
device you use stores a and sets up a unique . The first client used to
signed in to 1Password – either for the first time or after a user has been restored – is a linked app (or
browser) by default.

Linked app or browser

A client trusted to use SSO, by having set up a device key and created a corresponding
credential bundle.

The first app or browser you use to sign in creates a new set of randomly generated values that form the
. Any additional apps or browsers you enroll need approval. They’re approved by

successfully authenticating to the provider, consenting to the sign-in with an existing linked app,
and providing a code that’s randomly generated by the linked device.

When you approve a sign-in within your , it sends a copy of the
to the new device via an encrypted channel. The new app protects the credential

bundle with its own unique . The device key is critical for the overall security of .
Appendix A has more information about device key security and storage.

9.3 Linking other devices

When you set up a new app or browser, the the device uses is obtained from a
previously . For your existing device to send the credential bundle to your new device, a
trusted channel is set up between the two devices. For reliability, that channel is facilitated by
1Password servers and set up in such a way that 1Password can’t see what the two devices are sending
each other.

credential bundle

authenticates passkey

SSO

credential bundle
device key SRP- AUK

account password Secret Key

passkey SSO
device key credential bundle

credential bundle
SSO

linked app or browser credential bundle
end-to-end (E2E)

device key SSO

credential bundle
linked client

https://agilebits.github.io/security-design/deepKeys.html#deepKeys
https://agilebits.github.io/security-design/leopard.html#sec:deviceKeys

The trusted channel between two devices uses the cryptographic protocol. With CPace, two
devices with knowledge of a six-character code can to one another and agree on a shared
encryption key. That encryption key is used to encrypt the when it’s sent from a linked
device to a new device which makes the contents impossible to decrypt for anyone observing the
encrypted messages. In the event a malicious server attempts to interfere in the key agreement process,
1Password clients detect the presence and abandon participation.

CPace

A modern PAKE using a shared secret, defined by Abdalla, Haase, and Hesse (CPace, a balanced
composable PAKE.)

With these building blocks, the process shown in Figure 9.3 and annotated below describes how a
 safely travels between two devices.

Figure 9.3: An overview of the protocol by which a linked app or browser is added, showing the communication between the linked client,
new device, and 1Password server. Any SSO providers that perform initial sign-in are not depicted.

Line 1: The parties involved are a new device, the server, and a . Your
provider, if applicable, also plays a small role initially but they’re omitted from the figure for simplicity.

Line 2: You sign in to 1Password with a or SSO.

Line 3: The 1Password server sends a notification to all existing linked apps and browsers. They’ll notify
you that a new device wants to be set up and you need to approve the connection on the existing
device. If you choose to continue, you’ll have to sign in on the existing device unless you already have
an active session.

Lines 4-7: Your existing device initiates a trusted channel with the new device using . The existing
device then generates a 6-character setup code, uses it to create a CPace handshake , and sends the
handshake to the 1Password server.

Lines 7-10: Your new device fetches the CPace handshake and asks you to enter your setup code. After
you enter the setup code, your device computes a CPace reply from information in both the CPace
handshake and the setup code, then sends it to the 1Password server.

Both devices use the shared values to compute a shared session key .

Lines 11-13: Before the keys are used, it’s important to verify the keys have been exchanged correctly.
After all, you may have accidentally entered the wrong setup code or there may have been something
nefarious that tried to influence the messages sent between your devices.

To verify the keys, both devices compute an HMAC digest of the message they received from the other
device using the key they both derived. They send these verification values to one another and verify
whether the value computed by the other matches their own. If the values don’t match on either device
they break off the setup process and start over again.

CPace
authenticate

credential bundle

17

credential bundle

linked app or browser SSO

passkey

CPace

Lines 13-18: Your linked app or browser encrypts the credential bundle with (a derivative of) the session
key established previously and sends them to your new device via the 1Password server. Your new
device derives the decryption key the same way and decrypts the . Next, the device

generates a random , stores it, then encrypts the credential bundle with the device key. Your
device stores the newly encrypted credential bundle on the 1Password server and completes the
process to become a linked app or browser.

9.4 Quick on-device access with biometrics

The process described in Figure 9.2 requires that your device be online when unlocked. It’s possible for
certain devices to get access to vault contents while offline if the user’s business account is configured
to allow it. Offline access to vault contents is provided when a user successfully performs a biometric

. This is supported on Windows, Linux, macOS, iOS and Android using their respective
platform’s biometric authentication.

When you unlock with biometrics, the is used to decrypt vault contents locally so it
can be accessed offline. Clients also keep track of a reauthentication token. This token is used to
perform reauthentication with the 1Password server within a limited timeframe, without the client
performing passkey unlock or reaching out to the SSO server. When an account administrator turns on
biometric unlock, they temporarily delegate the responsibility of authenticating you to your device
instead of your identity provider.

A reauthentication token is requested when you use biometrics to unlock your or -enabled
1Password account. It’s guarded by the protections described in “Transport security” when it’s
transferred from the 1Password server to your device.

On macOS, iOS and Android devices, quick biometric unlock is protected by the respective platform’s
built-in secure elements. On Windows and Linux, the reauthentication token is stored in protected
operating system memory while the 1Password app is running either when locked or unlocked. On the
platforms that store the reauthentication token in memory, the token is lost when the app closes or
restarts, so you need to sign in to 1Password again.

17. Abdalla, Haase, and Hesse (2023)

credential bundle

device key

authentication

credential bundle

passkey SSO

https://agilebits.github.io/security-design/transport.html#transport
https://agilebits.github.io/security-design/bibliography.html#ref-DraftCpaceRFCv07

10 Revoking access

When Alice tells Bob a secret and later regrets doing so, she can’t make Bob forget the secret without
resorting to brain surgery. We feel brain surgery is beyond the scope of 1Password, and therefore
users should be aware that once a secret has been shared the recipient cannot be forced to forget that
secret.

Story 7: A week in the life of revocation

We’re always happy for our colleagues when they move on to new adventures.

Tom and Gerry have been working on Widgets For Cows, Barnyard Gadgets’ new Internet of
Things products, and it’s time for Tom to move on. Tom will get access to a new team and new
shared vault.

Ricky, the team owner, adds Tom to the new vault. Adding a new member to a shared vault is very
simple. A copy of the vault key will be encrypted with Tom’s public key so only Tom can decrypt
it, and Tom will be sent a notification about the new shared vault. But what about his old access
and Gerry’s new product plans for Widgets for Cows?

Ricky will remove Tom from the Widgets for Cows vault. Ricky can’t make Tom forget information
that he’s already had and perhaps made a copy of, but Tom can be denied access to anything
new added to the vault.

After Tom has been removed from the vault, Gerry creates a new Document called More Cow Bell
for the vault. More Cow Bell will be encrypted with a key that’s encrypted by the vault key, but
Tom should never get a copy of the encrypted Document item.

The next time Tom connects to the server, he will no longer be sent data from that vault. This
server policy mechanism prevents Tom from receiving any new data from that vault. Furthermore,
Tom’s client will be told to remove any copies of the vault key and the encrypted data it has
stored for that vault. This client policy at least get a well behaved client to forget data and keys it
should no longer have. Either of those policies is sufficient to prevent Tom from learning just how
much cow bell Gerry thinks is enough.

18. We’ve made no formal decision on whether rocket science is also beyond its scope.

18

file:///Users/megan/Projects/security-design/docs/passkeySSO.html
file:///Users/megan/Projects/security-design/docs/access-control.html

11 Access control enforcement

Users (and attackers) of 1Password are limited in what they can do with the data. Enabling the right
people to see, create, or manipulate data while preventing the wrong people from doing so is the point of
1Password. The sorts of powers that an individual has are often discussed in terms of Access Control
Lists (ACLs). For want of a better term, we’ll use that language here; however, it should be noted that the
mechanisms by which these controls are enforced aren’t generally the same as the ones for more
traditional ACLs. Indeed, different controls may be enforced by different mechanisms, even if presented
to the user in the same way.

Broadly speaking, there are three kinds of control mechanisms. These are cryptographic enforcement of
policy, server enforcement of policy, and client enforcement of policy.

11.1 Cryptographically enforced controls

If someone hasn’t been given access to a vault, it’s impossible in all practical terms for them to decrypt
its data. So at the simplest level, if a user hasn’t been added to a vault, the mathematics of cryptography
ensure they won’t be able to decrypt it.

Because the server never has access to decrypted vault keys, it can’t give out those keys to anyone.
Therefore the server simply doesn’t have the power to grant someone access to a vault. Such
requirements are cryptographically enforced.

Among the mechanisms cryptographically enforced:

Unlocking a vault.
Only those with access to a vault can share it.
User email address can be changed only by the user.
Server doesn’t learn user’s or .

11.2 Server-enforced controls

Cryptography doesn’t prevent a user (or their client) with access to the vault key from adding, deleting,
or modifying items in that vault when the information resides locally on their device. The same key they
use to decrypt the data could be used to encrypt modified data.

But 1Password offers the ability to grant individuals read permission to a vault while denying them write
permission. The server will reject any attempt from a read-only user of a vault to upload data to that
vault. This, and other features, are enforced by server policy. An example of one of these in action is
presented in Story 8.

Story 8: A day in the life of read-only data

Patty (a clever and sneaky dog) has been granted access to a vault called “Locations” that
contains the locations of the water dish and the dog door. So has another member of the team,
Morgan le Chien.

Patty thinks she will have the place to herself if Morgan can’t manage to settle in. So she’d like to
give Morgan misleading information. Although Patty has been granted only read access to the
Locations vault, she is a remarkably clever dog and extracts the vault key from her own data. The
same vault key that decrypts items is also used to encrypt items.

She modifies the location of the water bowl (listing the driest part of the house) and encrypts her
modified data with the vault key. Then she tries to send this modified data to the server so
Morgan will get that information instead.

But she finds that server policy prevents her from uploading modified data. Although
cryptographically she had the ability to modify the data, she could only do so on her system. Her
evil plan was foiled by server policy.

Of course, her plan would have failed anyway. Morgan is happy to drink from anything resembling
a water receptacle, and can manage remarkably well even if she doesn’t know the location of the
water bowl.

Secret Key account password

file:///Users/megan/Projects/security-design/docs/revoke-access.html
file:///Users/megan/Projects/security-design/docs/restore.html

11.3 Client-enforced controls

Client-enforced controls are limitations enforced within either the web browser or a native client, such as
an iOS application. Because the web browser or native client is running on a user’s system and outside
our control, these policies may be circumvented by a malicious client or determined user. This doesn’t
reduce their usefulness to ordinary users and may help prevent unintended disclosures or accidental
actions.

See Story 9 for an illustration of what client-enforced policies can and can’t do.

11.3.1 Controls enforced by client policy

Each of the client policies requires a server or cryptographically enforced policy be granted in order to
be allowed. For example, the Import permission may be circumvented by a client, but the user will be
unable to save the newly imported item to the server because the Write permission is enforced by the
server, not the client.

Importing items into a vault. A user may still create multiple items manually provided they have
permission to create new items in the vault. This permission may be used to restrict how many items
a user may easily create or prevent accidentally importing items.

Exporting items from a vault. A user may still obtain the item data by other means and create files
that aren’t controlled by 1Password. This permission may be used to prevent accidentally disclosing
the contents of an entire vault.

Revealing a password for an item. A user may still obtain the password by examining a web page
using the developers’ tools for their web browser. This permission may be used to prevent
accidental disclosure and may help reduce the risk of shoulder surfing and other social engineering
attacks.

Printing one or more items. A user may still obtain the item data by other means; create files that
are not controlled by 1Password and print out those files. This permission may be used to prevent
accidentally disclosing the contents of an entire vault.

11.4 Multiple layers of enforcement

Something enforced by cryptography may also be enforced by the server, and something enforced by
the server may also be enforced by the client. For example, the server won’t provide the vault data to
non-members of a vault, even though non-members wouldn’t be able to decrypt the data even if it were
provided. Likewise, a 1Password client will generally not ask for data the server would refuse to supply.
Throughout this document, we’ll typically mention the deepest layer of enforcement only.

Story 9: A day in the life of a concealed password

The administrators have come to be wary of how the dog Patty (see Story 8 for background)
treats data. They want Patty to have access to the password for the dog door (they want her to
be able to leave and enter as she pleases), but they don’t want Patty to give the password to any
of her friends should her paws accidentally press the Reveal button.

So the administrators limit Patty’s ability to reveal the password. She can fill it into the website
that controls the dog door (she lives in a somewhat unusual household), but she can’t
accidentally press 1Password’s Reveal button while her friends are watching. This is protected by
client policy.

But Patty is a clever dog. After she uses 1Password to fill on the website, she uses her browser’s
debugging tools to inspect what 1Password has inserted. She gets the password, and tells all her
friends so they can come and visit.

The house is suddenly full of Patty’s friends running wild, and the administrators have learned an
important lesson: Client policy controls are easily evaded.

12 Restoring a user’s access to a vault

If Albert forgets or loses their or , it’s impossible to decrypt the contents
of their vaults unless those vaults have been shared with someone else who hasn’t forgotten or lost the
Secret Key or account password. Our use of increases the risk to data
availability because, in addition to the possibility of a user forgetting their account password, there’s also
the possibility the Secret Key gets lost. Data loss can be catastrophic to a team, so some recovery
mechanism is necessary.

Our security design also requires that we at 1Password never have the ability to decrypt your data, so
we don’t have the ability to restore anyone else’s ability to decrypt their data if they have forgotten their

 or lost their . Our solution is to place the power to recover access to
vaults where it belongs: within the team.

12.1 Overview of groups

To understand how the works, it’s first necessary to understand how a group works. A
group will have a that’s similar in nature to an individual’s key set. It’s an encrypted public/private
key pair. A vault is held by a group if the vault key is encrypted with the group’s public key.

Dangerous bend

An individual (or another group) is a member of the group if the group’s private key can be
decrypted by that individual. To put it simply is a member of group if and only if ’s
private key is encrypted with ’s public key. can decrypt anything encrypted with her public
key because she can decrypt her private key. Thus, will be able to decrypt the private key of .
With ’sprivate key, she can decrypt the vault keys that are encrypted with ’s public key. But if

 hasn’t been granted access to a vault, she’ll be prevented by server policy from obtaining the
vault data even though she has the key to that vault. Simple.

12.2 Recovery groups

One of the most powerful capabilities a team administrator has is the power to assign members to the
team’s . In most configurations the assignment is automatic and Owners, Organizers,
and Administrators will automatically be made members of the group. In 1Password Families there’s no

ability to separate the roles of Owner, Administrator, and ; they’re all wrapped
up as “Organizer.” With 1Password Teams, Administrators are given more control, but not all the
underlying flexibility may be exposed to the user. This document describes recovery in terms of the
Recovery Group even when the group is not exposed to the Team administrator in those terms.

12.3 Implicit sharing

When a vault is created, a copy of the vault key is encrypted with the public key of the recovery group.

The members of the can decrypt the private key of the recovery group. Thus from an
exclusively cryptographic point of view, the members of the Recovery Group have access to all the
vaults.

 never have the ability to learn anyone’s , ,
, or . Recovery is recovery of the vault keys — it’s not recovery of the

account password or Secret Key.

12.4 Protecting vaults from recovery group members

Although there’s a chain of keys and data that would allow any member of the to
decrypt the contents of any vault, there are mechanisms that prevent it.

A member of the won’t be granted access to the encrypted data in a vault they
otherwise wouldn’t have access to, even if they can obtain the vault key.
A member of a Recovery Group will only be sent the encrypted vault keys after the user requesting
recovery has re-created their account.

Secret Key account password

two-secret key derivation (2SKD)

account password Secret Key

Recovery Group
key set

19

Recovery Group

Recovery Group member

20

Recovery Group

21

Recovery Group members account password Secret Key
Account Unlock Key (AUK) SRP-

Recovery Group

Recovery Group

https://agilebits.github.io/security-design/access-control.html
https://agilebits.github.io/security-design/secrets.html

Thus the server prevents a member of the from obtaining the vault keys without action
on the part of the person seeking recovery. The capacity to decrypt the vault keys offers the malicious
member of a recovery group little benefit if those encrypted keys are never provided. Furthermore, even
if a malicious member of the recovery group can trick the server into delivering the encrypted vault keys
when it shouldn’t, the attacker still needs to obtain the vault data encrypted with that key.

12.5 Recovery risks

Recovery mechanisms are inherently weak points in maintaining the secrecy of data. Although we have
worked to design ours to defend against various attacks, there are special precautions that should be
taken when managing a or authorizing recovery.

Members of a recovery group should be adept at keeping the devices they use secure and free of
malware.
Members of the recovery group should be aware of social engineering trickery.
Recovery requests should be verified independently of email. (Face to face or a phone call should be
used.)
Recovery emails should be sent only if you have confidence in the security of the email system.
If there are no members of a recovery group, the capacity to recover data is lost to the team.

Figure 12.1: An overview of what keys are available to whom and when to support data recovery.

Figure 12.1 provides an overview of what data and keys are held by whom. Some hopefully irrelevant
details have been omitted to keep the diagram manageable. For example, the transport encryption layers
for the messages are entirely skipped (see Transport security) and where we speak of encrypting or
decrypting private keys, it’s actually encrypting or decrypting the keys that the private parts of keys are
encrypted with (see 5.1). The illustration acts as if Carol would only ever have a single vault, though of
course she may create a number of different vaults.

Line 1: Our participants are Bob, a member of the ; Carol, a member of the same team
but not a member of the recovery group; and , the 1Password Server.

Line 2: Bob starts with his one personal , , and with the private key, , of the
recovery group encrypted with Bob’s public key.

Lines 3-4: Carol creates a new vault which will be encrypted using vault key , which her client
generates. Encrypting the items in a vault is properly described in Figure 5.1. Here we just abbreviate it
as “ ”.

Line 5: When Carol creates a vault a copy of its vault key, , is encrypted using the recovery group’s
public key, , and sent to the server. The encrypted vault data, , is also sent to the server for
syncing and storage.

Line 6: When Bob initiates recovery (presumably after receiving a request from Carol outside of this
system, as Carol can no longer sign in), Bob informs the server of his intent, and the server sends
instructions to Carol by email.

Not shown in this diagram is the server putting Carol’s account into a specific suspended state. If Carol
successfully signs in, the recovery is automatically cancelled.

Line 7: When Carol’s account is in a pending recovery state, she’s directed through a procedure very
similar to initial signup. The key difference being that she maintains the same name, email address, and
permissions instead of being treated as a new user by the system.

During this process, Carol generates a new personal key set, , and shares her new public
key, with the server.

The server will inform Bob that he needs to “complete the recovery” of Carol’s account.

Recovery Group

Recovery Group

Recovery Group

key set

22

https://agilebits.github.io/security-design/transport.html#transport
https://agilebits.github.io/security-design/secureItems.html#fig:new-items
https://agilebits.github.io/security-design/secureItems.html#fig:new-items

Not shown is Carol’s client generating a new during this recovery signup. Carol will choose a
new , which may be identical to her previous one. And from her new Secret Key and
potentially new account password, her client will generate a new with which it will encrypt her new
personal key set.

Line 8: After Carol has created her new key set and Bob confirms he wishes to complete recovery, the
server will send Carol’s new public key, , along with the copy of the vault key that’s encrypted with
the recovery group’s key, . Recall that was sent to the server when Carol first created the vault.

Lines 8-9: Bob can decrypt and re-encrypt it as with Carol’s new public key, and send that to
the server.

The server can then pass back to Carol, along with the encrypted data in the vault, .

There are several things to note about the process illustrated in Figure 12.1. Most importantly, at no time
was the server capable of decrypting anyone’s data or keys. Other security features include the fact that
Bob was not sent until after Carol acted on recovery. The server also never sent Bob the data
encrypted with . The server would have canceled recovery if Carol successfully authenticated using
her old credentials, thus somewhat reducing the opportunity for a malicious recovery without Carol
noticing. Nonetheless, it remains possible that a malicious member of a recovery group who gains
control of Carol’s email could come to control Carol’s 1Password account.

12.6 Recovery keys

Recovery keys are a mechanism for allowing a user to recover their account without the need for a
member of the to be involved. This is particularly useful for accounts with a single user
or in the case of a family organizer, where there may not be another user available to perform recovery
using the method described above. We designed this mechanism to minimize the risk of these keys
being used to enable an attacker to take over an account, thus providing greater safety than a user

backing up their and .

12.6.1 Recovery key generation

Recovery keys are generated by the client application using a
, with a length of 32 bytes. Following generation, the recovery

key is encrypted using the user’s key set symmetric key, and stored on the 1Password server. It’s stored
to allow the use of the key without regeneration or redistribution should the user’s key set be rotated, or
cryptographic components upgraded, such as the
algorithm. As is the case of other secrets, such as the , recovery keys are never exposed to
the 1Password servers in unencrypted form.

Three subkeys are then generated using a with the recovery
key as the input keying material, and the following information values:

 1P_RECOVERY_KEY_AUTH_v1 : Authentication subkey – 32 bytes, used to authenticate the
recovery key via a PAKE, to ensure the correct key is being used without exposing the key itself.
 1P_RECOVERY_KEY_ENC_v1 : Encryption subkey – 32 bytes, used to encrypt the user’s key set
symmetric key, allowing the user to decrypt their key set and recover their account.
 1P_RECOVERY_KEY_UUID : Identifier - 16 bytes, used to identify the recovery key. This is a non-
secret value, used by the server to identify the correct recovery key to use when multiple keys are
available.

The is used to ensure the subkeys are independent of each other, and recovery key is not
exposed. Using the encryption subkey, the user’s key set symmetric key is encrypted by the client
application, and uploaded to the 1Password server. In addition, the client application uses

, with the authentication subkey as the , to derive a , which is then
uploaded to the server and used to the recovery key to the server.

12.6.2 Recovery key authentication

When a user wants to recover their account, they must complete the following steps:

1. The client application will derive the identifier subkey from the recovery key, supplying it to the
server.

2. The server will return the cryptography version number of the recovery key, and any
 parameters required to authenticate the recovery key.

3. The client application will derive the encryption and authentication subkeys from the recovery key,
and use the authentication subkey to authenticate the recovery key to the server. This occurs with
the client application using , with the authentication subkey as the , the server will
authenticate the recovery key using the previously supplied .

Upon successful completion of these steps, the recovery key is authenticated and the client application
can proceed with recovery.

Secret Key
account password

AUK

Recovery Group

account password Secret Key

Cryptographically Secure Pseudo-
Random Number Generator (CSPRNG)

password-authenticated key exchange (PAKE)
Secret Key

hash-based key derivation function (HKDF)

HKDF

Secure
Remote Password (SRP) SRP- SRP-

authenticate

password-
authenticated key exchange (PAKE)

SRP SRP-
SRP-

12.6.3 Recovery key policies

A recovery key may implement a policy to control how it can be used. This is selected by the user when
the key is generated, and stored alongside the key on the server. These policies allow additional controls
to be added, beyond simple possession of the key, to ensure the user is authorized to use the key. The
server won’t provide the encrypted symmetric key to the client application until all policies are
satisfied.

In addition to the polices applied as part of the recovery key itself, the server may also apply additional
policies to the recovery process, this includes (at a minimum):

1. Recovery is aborted if the user successfully during the recovery process.
2. Recovery is aborted if the user has successfully authenticated during the prior hour.
3. Recovery is aborted if the recovery key had an aborted attempt in the prior 24 hours.

12.6.4 Recovery key use

The server will return the encrypted symmetric key after is complete and all
recovery policies complied with. The client application can decrypt it using the encryption subkey,
allowing the user to regain access to their key set. The user will then be able to regenerate their

 and set a new , or otherwise set new root key material based on the
 model their account uses (e.g. setting a new).

12.6.5 Recovery codes

Recovery codes are an implementation of recovery keys, with a policy applied to require email
verification before the recovery key can be used. As such, when a user want to recover access to their
account with a recovery code, they must verify their email address, then complete the recovery process
as described above.

If the user can’t verify control of their email address, the server won’t provide the encrypted
symmetric key to the client application, and the recovery process will be aborted.

19. For some values of the word “simply.”

20. We discovered during our beta testing that it was difficult to make the distinction between Owners,
Administrators, vault Managers, and Recovery Group members clear enough for those distinctions
to be sufficiently useful.

21. 1Password Teams also have a permission called Manage All Groups that has equivalent
cryptographic access, which is only given to the Administrators and Owners groups by default.

22. This would be a good time for Bob to confirm with Carol through some method other than email that
it’s indeed Carol who has reestablished her account.

key set

authenticates

key set authentication

Secret

Key account password
authentication passkey

key set

13 Secrets Automation

As described in other sections (in particular @ref(#modern-auth) and @ref(#transport)), all authenticated
interactions with 1Password require that the client prove knowledge of the session key without revealing
any secrets. That session key in turn can only be established through proof of knowledge or access to
the and .

This aspect of our security design makes it much harder for someone to work their way around
1Password’s , as every request to the service is cryptographically bound to the
authentication process itself. It also limits the number of authentication attempts a client can perform in
a particular time period.

This security design introduces a challenge when automated processes need to retrieve, modify, or
create secrets in 1Password. Such apps and processes are not designed to sign in to 1Password
directly; typically those processes are designed to through more traditional means.
Reauthenticating for each request would be cumbersome at best.

Figure 13.1: The 1Password Connect server lives in your environment and acts as a RESTful connection between your apps and the
1Password service.

The overall solution we provide as part of Secrets Automation is a Connect Server. It’s capable of signing
in to 1Password directly, and apps and automated processes can interact with it through a
interface. The API for the Connect Server can be called by customer-created clients or built with plug-ins
we offer.

Any automated process given power over an organization’s resources, particularly the kinds of resources
managed within 1Password, creates an area of attack. Therefore, it’s necessary to design them with
security in mind. In general, there are two principles to adhere to when deploying automations like these.

The power allotted to any given automation should be closely tied and limited to what it’s expected
to do.
The credentials required by the automation to perform its duties must be securely managed.

1Password Secrets Automation is designed according to these principles — it’s also design to help
customers follow the same principles.

You may want to read through what follows multiple times, because many of the interacting parts are
mentioned before they’re fully defined. In particular, the descriptions of the credentials JSON and bearer
token each depend on each other.

account password Secret Key

authentication

authenticate

RESTful

23

24

https://agilebits.github.io/security-design/restore.html
https://agilebits.github.io/security-design/transport.html

13.1 The Connect server

The Connect server is deployed in your environment and serves as a bridge between the client
processes and the 1Password service. Although simple in principle, there are a number of interacting
parts, so it’s useful to start with an overview and quick facts about it that will be elaborated on later in
this chapter.

The 1Password Connect server has encrypted credentials necessary to sign in to 1Password under
a specific service account.
The service accounts used by Connect servers are not given any ability to manage users or vaults.
The Connect server is deployed by the user in the user’s environment. AgileBits has no means of
accessing it.

 to the Connect server is through use of an HTTP Authorization header bearer token.
The credentials necessary to sign in as the service account are split between what’s stored with the
Connect server and bearer token.

13.1.1 Service account

1Password service accounts aren’t highly visible to users, but it’s important to mention them to better
describe how Secrets Automation works in practice.

Generally speaking, a service account is a special user within a 1Password account, but the user isn’t
associated with a person or group of people. They help an organization manage the secrets used by
entities with very specific roles and functions.

If Patty, a member of a 1Password account, is responsible for ensuring backups can be restored, they
may need access to the credentials for the backups system. But the automated processes that perform
backups and restorations shouldn’t have all of Patty’s 1Password privileges. They should only have the
privileges required to perform their duties.

The appropriate service accounts are set up in 1Password when setting up Secrets Automation. During
creation of a service account, the administrator will select which vaults the service account will have
access to and share those vaults with the service account. In this respect, the service account is like an
ordinary user. Unlike an ordinary user, the service account has no management privileges and will be
prevented from further sharing the vaults to which it has been given the keys by the 1Password backend
system.

The for the service account is randomly generated and discarded after deriving the
 and . Key generation is performed client side, either in the web client

or the command-line interface (CLI).

Dangerous bend

The service accounts created for Secrets Automation complement the ones created for use by
the SCIM bridge, and used for automated management of 1Password users. They have the ability
to create and delete users, and add users to groups, but no ability to retrieve data from vaults.

13.1.2 Local deployment

The Connect server, with the encrypted 1Password credentials, is deployed on your system. At initial
release, April 2021, we provided setups for deploying it within a Docker container or via Kubernetes. At
no time does AgileBits have access to the Connect server or data it stores.

13.1.3 Credential store

The Connect server locally stores encrypted credentials, containing the and for the
associated service account. This saves it from having to go through the entire key derivation process
each time it needs to start a 1Password session.

13.1.4 The credentials file

When setting up a Connect server initially, the user’s
1Password client constructs a 1password-credentials.json
file along with a bearer token. The credentials file has three
substantive components: The verifier is used as part of an
additional authentication of the bearer token;
 encCredentials contain the encrypted credentials

Authentication

account password
Account Unlock Key (AUK) SRP-

AUK SRP-

Figure 13.2: An overview of the credentials file, with
three major components and some header
information.

Figure 13.5: Connect server verifier

necessary for the associated service account to sign in to
1Password; and uniqueKey is key shared between the client-
facing Connect server and the Connect server syncher.

13.1.5 Encrypted credentials

The encrypted credentials, illustrated in Figure 13.3 contain, unsurprisingly, the encrypted 1Password
credentials required to unlock 1Password as the associated service account.

Figure 13.3: The encCredentials object is a JSON web key (JWK) used to encrypted 1Password unlocking credentials. It’s encrypted
with a key derived from the bearer token.

Encryption, as with all our symmetric encryption, is with using
 for authenticated encryption. The is given in the .

When decrypted, the object is structured as in the Golang structure in Figure 13.4. The URL will typically
be something like example.1password.com ; the email addresses created for service accounts are never
expected to be used for email, and only serve as a username. The user

 uniquely identifies the service account , , and are as described in “A
deeper look at keys.”

Figure 13.4: Decrypted credential structure. The URL, Email, UserUUID, and SecretKey are used to identify the user, account, and service.
The SRP- and AUK are the secrets required to authenticate with 1Password and decrypt (the keys needed to decrypt the keys which

encrypt) the vault data.

13.1.6 Verifier

The token within the bearer token is run through a
key derivation function, which must match the
verifier stored by the Connect server.

This verification is redundant, as the signature
verification of the entire bearer token provides all
the necessary and guarantees the
integrity of the request.

13.1.7 Interprocess key

The 1Password Connect server has two running processes. One provides the user-facing service while
the other synchronizes data with 1Password itself. Among other things, this allows the Connect server to
operate even when a direct connection to 1Password is unavailable. This also allows for much faster
responses from the Connect server. The data stored by the sync server is encrypted as with any
1Password client.

Advanced Encryption Standard (AES)
Galois Counter Mode (GCM) nonce

Universally Unique Identifier
(UUID) Secret Key25 SRP- AUK

authentication

26

https://agilebits.github.io/security-design/deepKeys.html#deepKeys
https://agilebits.github.io/security-design/deepKeys.html#deepKeys

Figure 13.7: Sample JWT header for bearer tokens

Figure 13.6: Connect server IPC key. The Connect server interprocess key is used to secure communication between the sync server and
the client facing Connect service.

The interprocess key, here called uniqueKey is used as a shared secret between the client-facing
Connect server and synchronization server in order to encrypt the bearer token between them.

13.2 Bearer token

The bearer token is a that’s transmitted from the user’s client process to the
Connect server using the HTTP Authorization header. It contains a key that’s used, indirectly, to decrypt
the 1Password credentials stored by the Connect server. It also contains claims, in the JWT sense,
listing what 1Password vaults it has access to. As a signed JWT, it’s also used directly for
to the Connect server. Serialized JWTs are composed of three base64-encoded parts: header, payload,
and signature. These parts are separated by the “.” character.

13.3 Header

An example header portion is shown in Figure 13.7.
The kid identifies the signing key of the
corresponding service account , which is
used to sign the bearer token. It must be a key
belonging to the subject field in the payload.

Dangerous bend

Although Elliptic Curve Digital Signature Algorithm (ECDSA) isn’t the most robust of digital
signature algorithms, it’s the one we settled on for the timebeing, as it’s widely available in well-
vetted cryptographic libraries. We find it particularly important to whitelist the algorithms that we
accept in a JWT, because it helps avoid a number of security concerns surrounding JSON
Object Signing and Encryption (JOSE) and JWT.

In particular, the flexibility of signature and encryption algorithms can lead to downgrade attacks.
In addition to whitelisting signature algorithms (currently ECDSA using P-256 and SHA-256
(ES256) is the only one the Connect server will accept) our verification process is very aggressive
in rejecting inconsistent or malformed tokens.

13.3.1 Payload

A sample payload, or claims, portion of the bearer token can be seen in Figure 13.8.

Figure 13.8: Sample JWT payload for bearer tokens. AUUID is the account UUID, and the subject sub is the user UUID for the service
account user. The features, fts , will always be vaultaccess for Secrets Automation. The token is both an authentication secret to

the Connect server and key used to derive the key to decrypt the 1Password credentials stored on the Connect server.

27

JSON web token (JWT)

authentication

key set

28

Most of what appears in the figure can be understood from the standards, which you may peruse at
your leisure. What requires explanation follows.

 sub The subject of the bearer token is the UUID of the service account that signs into 1Password.
 auuid The account UUID.
 fts Features will always be “vaultaccess" for Secrets Automation.
 vts The vaults the client is claiming access to, along with its read and write claims.
 token The token which, among other things, is used to decrypt credentials stored by the Connect
server.

It’s worth noting that a particular service account may have more access to more vaults than claimed in
the bearer token payload. The Connect server won’t honor client requests that go beyond the validated
claims.

For example, if the associated service account has the ability to read and write to vaults and , while
the signed claim is only for reading , the Connect server will only honor read requests for . Naturally,
if the service account associated with one of these tokens doesn’t have any access to but somehow
shows up with a valid claim to it, the Connect server will reject the claim.

Even if the Connect server were somehow tricked into honoring such a claim, the 1Password service
wouldn’t return the data, and the Connect server wouldn’t be able to decrypt the data even if it were
returned.

13.3.2 Signature

The third part of the bearer token is the signature. The signature is created by the associated
service account using that account’s signing key. This signature covers the payload of the bearer token,
preventing tampering or forgery.

23. This is true whether or not those processes are systematically managed within an organization or are
left untracked. It is not difficult to guess which might introduce more risk.

24. Or, perhaps, zero times.

25. It’s only the non-secret part of the Secret Key used in the process. All service account identifying
information must be consistent for successful authentication.

26. This might be particularly handy if you are managing your network equipment with Secrets
Automation.

27. All keys are unique, but are some keys more unique than others? They’re all unique, but coming up
with names for yet another key when developing something is difficult, and the temporary
placeholder name may stick around longer than anyone might expect.

28. Arciszewski (2017)

JWT

JWT

https://agilebits.github.io/security-design/bibliography.html#ref-Arciszewski17:JOSE

14 Transport security

We designed 1Password with the understanding that data traveling over a network can be read and
tampered with unless otherwise protected. Here we discuss the multiple layers of protections we have in
place. Roughly speaking, there are three layers of protection.

1. 1Password’s at-rest encryption, as described in “How vault items are secured,” also applies to data
when it’s in transit.

Your items are always encrypted with vault keys, which in turn are encrypted by keys held by you and
not by the server. They remain encrypted this way in transit.

2. with best practices (encryption, data integrity, authenticity of server).

TLS the successor of SSL, puts the “S” in “HTTPS.” It encrypts data in transit and authenticates the
server so the client knows to whom it’s talking.

3. and encryption

The login process provides . Not only does your client prove who it is to the
server, but the server proves who it is to the client. This is in addition to the server authentication
provided by TLS. During login, a session key will be agreed upon between client and server, and

communication will be encrypted using in
.

The protocol provides a layer of authentication and encryption that’s independent of .

When discussing transport security, it’s useful to distinguish different security notions: integrity,

authenticity, and confidentiality. “Confidentiality” means the data remains secret, “authenticity”
means the parties in the data exchange are talking to whom they believe they’re talking to, and data
“integrity” means the data transmitted can’t be tampered with. Tampering includes not only changing the
contents of a particular message, but also preventing a message from getting to the recipient or injecting
a message into the conversation the authorized sender never sent.

Because parts of systems can fail, it’s useful to design the overall system so a failure in one part doesn’t
result in total failure. This approach is often called defense in depth.

As summarized in Table 14.1, each encryption layer is independent of the others. If one fails, the others
remain in place (though see A.1 for an exception). The at-rest encryption described in How vault items
are secured is not part of a communication protocol, and so authentication is not applicable to it. ,

as it’s typically used, the server but doesn’t authenticate the client.

Table 14.1: All these mechanisms are used to protect data in transit. “SRP+GCM” refers to the combination of SRP and our communication
encryption; “at-rest encryption” refers to the normal encryption when stored.

SRP+GCM TLS AT-REST ENCRYPTION

Confidentiality

Data integrity

Server authenticity

Client authenticity

One limitation of SRP+GCM is that each message is encrypted individually. An attacker who can get in
the middle of that connection, could replay messages sent over SRP+GCM and the server will accept
them. We’d like to expand the security goals of this transport encryption such that messages cannot be
replayed in the future.

14.1 Data at rest

Your 1Password data is always encrypted when it’s stored anywhere whether on your computer or on
our servers, and it’s encrypted with keys that are encrypted with keys derived from your account
password and Secret Key. Even if there were no other mechanisms to provide data and

 for the data that reaches the recipient, 1Password’s at-rest encryption sufficiently provides
both.

Because it’s designed for stored data, this layer of data encryption doesn’t ensure messages can’t go

missing or older data is not replayed. It also doesn’t the communication channel.

TLS

SRP authentication

mutual authentication

Advanced Encryption Standard (AES) Galois Counter Mode
(GCM)

TLS

29

TLS

authenticates

30

confidentiality
integrity

authenticate

https://agilebits.github.io/security-design/secureItems.html#secureItems
https://agilebits.github.io/security-design/leopard.html#sec:cryptoHTTPS
https://agilebits.github.io/security-design/secureItems.html#secureItems
https://agilebits.github.io/security-design/secureItems.html#secureItems
https://agilebits.github.io/security-design/secrets.html
https://agilebits.github.io/security-design/infra.html

14.2 TLS

 puts the “S” in “HTTPS”. It provides encryption, data integrity, and authenticity of the server.

Our TLS configuration includes and a restricted set of cipher
suites to avoid downgrade attacks. Precise policies and choices will change more rapidly than the
document you’re reading will be updated.

Neither certificate pinning nor DNSSec have been implemented. Given the
described in “A modern approach to authentication,” the marginal gain in security provided by such
measures isn’t something we consider to be worth the risk of availability loss should those extra
measures fail in some way. Following research and analysis of the value of certain security indicators
and extended validation certificates in particular, we’re no longer using extended validation certificates.

14.3 Our transport security

Our use of authentication between the client and server provides

. Both the server and client will know they’re talking to exactly who they think
they’re talking to.

This is in addition to the server authentication provided by . Thus, if TLS fails in some instances to
provide proper , SRP still provides authentication.

Not only does the client prove its identity to the server, but the server proves its identity to the client.

14.3.1 Client delivery

This section has focused on the transport security between 1Password clients and server. For discussion
of delivery of the client itself see A.1 in “Beware of the leopard.”

14.3.2 Passkey and single sign-on unlock caveats

You can use a or to unlock a 1Password account, as described in @ref(#passkeySSO).
When you sign in with a passkey, that sign-in with the 1Password server is only protected by . When
you sign in with your SSO provider, they’re responsible for protecting your sign-in information on the
network. Single sign-on providers generally only protect the of login information using
TLS.

After completing with either method, a client will fetch an encrypted
from the server. A client can only use after fetching this bundle. If an attacker can break the

security of , they can obtain an encrypted copy of the credential bundle.

29. When discussing information security, the acronym “CIA” is often used to refer to confidentiality,
integrity, and availability. But when considering data transport security, integrity and authenticity
play a major role. In neither case should the abbreviation be confused with the well-known
institution, the Culinary Institute of America.

30. Decrypted Documents may be written to your device’s disk temporarily after you open them.

31. Jackson et al. (2007)

32. Hunt (2019)

TLS

HTTP Strict Transport Security (HSTS)

mutual authentication

31 32

Secure Remote Password (SRP)

mutual authentication

TLS
authentication

passkey SSO
TLS

confidentiality

authentication credential bundle
SRP

TLS

https://agilebits.github.io/security-design/modernauth.html#modernauth
https://agilebits.github.io/security-design/leopard.html#sec:cryptoHTTPS
https://agilebits.github.io/security-design/leopard.html#leopard
https://agilebits.github.io/security-design/bibliography.html#ref-JacksonET07:EVeval
https://agilebits.github.io/security-design/bibliography.html#ref-Hunt14:EVisDead

15 Server Infrastructure

15.1 What the server stores

1Password stores account, team, vault, and user information in a relational database. Membership in
teams and access to team resources, including vaults, groups, and items, are determined by fields within
each database table. For example, the users table includes three fields used to determine user identity
and team membership. These fields are uuid , id , and account_id . The user’s account_id field
references the accounts table id field, and this relationship determines membership within an
account.

These relationships — users to accounts, accounts to vaults, vaults to items — don’t determine a user’s
ability to encrypt or decrypt an item, they only determine the ability to access the records. The
relationship from a user to an item within a team vault is as follows:

A users table entry has an account_id field that references the id field in the accounts
table.

An accounts table entry has an id field which is referenced by the account_id field in the
 vaults table.

A vaults table entry has an id field which is referenced by vault_id field in the
 vault_items table.

A vault_items table entry has the encrypted_by , enc_overview , and enc_details fields
which reference the required encryption key and contain the encrypted overview and detail
information for an item.

A malicious database administrator may modify the relationships between users, accounts, teams,
vaults, and items, but the cryptography will prevent the items from being revealed.

Principle 3 states the system must be designed for people’s behavior, and that includes malicious
behavior. A malicious database administrator may be able to modify the relationships between users and
items, but he will be thwarted by the cryptography when he, or his cohort in crime, attempts to decrypt
the item. The cryptographic relationship between a user and an item within a team vault is as follows:

A vault_items entry has a vault_id field which references the vault_id field in the
 user_vault_access table. The enc_overview and enc_details fields in a vault_items entry
are encrypted with the key contained in the enc_vault_key field of the corresponding
 user_vault_access entry, which is encrypted itself.

A user_vault_access entry is located using the id field for the users table entry and id
field for the vaults table entry. The enc_vault_key field in the user_vault_access entry is
encrypted with the user’s public key and may only be decrypted with the user’s private key.

A users entry is located using the email address the user provided when signing in and the
 accounts entry for the matching domain. The users entry includes the pub_key field which is
used to encrypt all the user’s secrets.

With the hard work of the malicious database administrator, the user may have access to a
 user_vault_access table entry which has the correct references, but since 1Password never has a
copy of the unencrypted vault key, it’s impossible for the user to have a copy of the vault key encrypted
with her public key. The malicious database administrator could copy the encrypted vault key for another
user, but the user wouldn’t have the private key required to decrypt the encrypted vault key.

Principle 2 states we should trust the math, and as has been shown here, even if a malicious database
administrator were to modify the account information to grant a user access to an encrypted item, the
user still lacks the secrets needed for decryption. The attacker has been foiled again.

Finally, principle 4 states that our design should be open for review. While we hope our database
administrators don’t become malicious, we’ve provided all the information needed to grant unauthorized
access to encrypted items knowing they will remain protected by cryptography.

The example of a malicious database administrator was chosen because the worst-case scenario is
someone sitting at a terminal on the back end server, issuing commands directly to the database, with a
list of database tables and column names in hand.

https://agilebits.github.io/security-design/principles.html#principle-3-people-are-part-of-the-system
https://agilebits.github.io/security-design/principles.html#principle-2-trust-the-math
https://agilebits.github.io/security-design/principles.html#principle-4-openness
https://agilebits.github.io/security-design/transport.html
https://agilebits.github.io/security-design/leopard.html

15.2 How your data is stored

1Password stores all database information using an Amazon Web Services Aurora database instance.
The Amazon Aurora service provides a MySQL-compatible SQL relational database. Aurora provides
distributed, redundant and scalable access. Some of the tables and their uses were provided earlier.

Data is organized in the traditional manner for a relational database, with tables consisting of rows and
columns, with various indices defined to improve performance.

Binary data, which may include compressed JSON objects representing key sets, templates, and other
large items is compressed using ZLIB compression as described in RFC 1950.

The tables are listed as follows:

 accounts Contains registered teams, which originated from an initial signup request, approval, and
registration. This table includes the cleartext team domain name (domain), team name (team) and
avatar (avatar). Other tables will typically reference the accounts table using the id field.

 devices Contains a list of devices used by the user. The table includes information for performing
MFA functions, as well as the cleartext last authentication IP address (last_auth_ip), client name
(client_name), version (client_version), make (name), model (model), operating system
name (os_name) and version (os_version), and web client user agent string
(client_user_agent).

 groups Used to reference groups of users in a team. The groups table is primarily referenced by
the group_membership and group_vault_access tables. This table includes the cleartext group
name (group_name) and description (group_desc), public key (pub_key), and avatar (avatar).

 invites Contains user invitations. The unencrypted acceptance_token is used to prevent
inappropriate responses to an invitation and not relevant once a user has been fully initialized. The
remaining unencrypted columns are the user’s given name(first_name), family name
(last_name) and email address (email).

 signups Contains user requests to use the 1Password server. This table includes the cleartext
team name (name) and email address of the requester (email).

 users Contains registered users, which originated via the invitation process and were eventually
confirmed as users. This table includes the cleartext user name (first_name and last_name),
email address (email), a truncated copy of the lower-case email address (lowercase_email), the
user’s public key (pub_key), and an avatar (avatar).

Aggregating the list of unencrypted fields above, the data subject to disclosure in the event of a data
breach or required disclosure are:

Team domain name, long-form name, and avatars.

IP addresses used by devices

MFA secrets

Client device makes, models, operating systems, and versions

Public keys, which are intended to be public.

Group names, descriptions, and avatar file names.

Users’ full names, email addresses, and avatar file names.

33. Only the cleartext columns will be listed at present as these are the columns which would be
disclosed in the event of a data breach. The encrypted columns will be protected by the security of
the various keys which the server doesn’t possess.

33

A Appendix A: Beware of the leopard

Beware of the leopard

“You hadn’t exactly gone out of your way to call attention to them had you? I mean like actually
telling anyone or anything.”

“But the plans were on display…”

“On display? I eventually had to go down to the cellar to find them.”

“That’s the display department.”

“With a torch.”

“Ah, well the lights had probably gone.”

“So had the stairs.”

“But look you found the notice didn’t you?”

“Yes,” said Arthur, “yes, I did. It was on display in the bottom of a locked filing cabinet stuck in a
disused lavatory with a sign on the door saying Beware of the leopard.”

This chapter discusses places where the actual security properties of 1Password may not meet user
expectations.

A.1 Crypto over HTTPS

1Password offers a web client which provides the same encryption as when using the
native clients. The web client is fetched from our servers as a set of JavaScript files (compiled from
TypeScript source) that’s run and executed locally in the user’s browser on their own machine. Although
it may appear to users of the web client that our server has the capacity to decrypt user data, all
encryption occurs on the user’s machine using keys derived from their and

. Likewise authentication in the web-client involves the same zero-knowledge authentication scheme
described in 4.

Despite that preservation of encryption and zero-knowledge authentication, the use
and availability of the web client introduces a number of significant risks.

The authenticity and integrity of the web client depends on the integrity of the TLS connection
by which it’s delivered. An attacker capable of tampering with the traffic that delivers the web client
could deliver a malicious client to the user.

The authenticity and integrity of the web client depends on the security of the host from which
it’s delivered. An attacker capable of changing the web client on the server could deliver a
malicious client to the user.

The web client runs in a very hostile environment: the web browser. Some attacks on the
browser (like a malicious extension) may be able to capture user secrets. This is discussed further in
A.1.1.

Without the web-client users would only enter their into native clients and
so would be less vulnerable to phishing attacks.

The web client creates the false impression for many users that encryption is not end-to-end.
Although this may not have direct security consequences for the user, it may re-enforce
unfortunately low expectations of security in general.

User mitigations include:

Use (code signed) native clients as much as possible.
Keep browser software up to date
Create a specific browser profile for using the web-client
Pay close attention to browser security warnings
Use only on trusted networks.
Manually check certificates

34

end-to-end (E2E)

account password Secret

Key

end-to-end (E2E)

account password

file:///Users/megan/Projects/security-design/docs/modernauth.html#modernauth
file:///Users/megan/Projects/security-design/docs/infra.html
file:///Users/megan/Projects/security-design/docs/srp.html

Our mitigations include:

Use the most recent version
Don’t support weak cipher suites (so avoiding many downgrade attacks)
Use of safe JavaScript constructions.
Use (so avoiding HTTPS to HTTP downgrade attacks)
Pin Certificates (not yet implemented)

Browser warnings

Always be sure to heed all browser warnings regarding TLS connections.

A.1.1 Crypto in the browser

Running security tools within a browser environment brings its own perils, irrespective of whether it’s
delivered over the web. These perils include:

The browser itself is a hostile environment, running processes and content that are neither under
your control nor ours. Sandboxing within the browser provides the first line of defense. Structuring
our in-browser code to expose only what needs to be exposed is another. Over the past decade,
browsers have made enormous improvements in their security and in their isolation of processes,
but it still remains a tough environment.

JavaScript, the language used within the browser, offers us very limited ability to clear data from
memory. Secrets we’d like the client to forget may remain in memory longer than useful.

We have a strictly limited ability to use security features of the operating system when operating
within the browser. See section A.10.2 for how this limits the tools available for protecting the

 when stored locally.

There’s a paucity of efficient cryptographic functions available to run in JavaScript. As a
consequence, the WebCrypto facilities available in the browsers we support impose a limit on the
cryptographic methods we can use. For example, our reliance on PBKDF2 instead of a memory-
hard KDF such as Argon2 is a consequence of this.

A.2 Recovery Group powers

From a cryptographic point of view, the members of a have access to all the vault keys
in that group. Server policy restricts what a member of the Recovery Group can do with that access,
but if a is able to defeat or evade server policy and gain access to an
encrypted vault (for example, as cached on someone else’s device) then that Recovery Group member
can decrypt the contents of that vault.

Depending on the nature of the threat to the team’s data and resources an attacker will put into acquiring
it, members of the and their computers may be subject to targeted attacks.

Recovery group members

Members of the must be selected with care and keep their systems secure.

A.3 No public key verification

At present there’s no practical method for a user to verify the public key they’re encrypting data to
belongs to their intended recipient. As a consequence it would be possible for a malicious or
compromised 1Password server to provide dishonest public keys to the user, and run a successful

 attack. Under such an attack, it would be possible for the 1Password server to
acquire vault encryption keys with little ability for users to detect or prevent it

This is discussed in greater detail in “Appendix C.”

TLS

HSTS

Secret
Key

Recovery Group
35

Recovery Group member

Recovery Group

recovery group

36

Man

in the Middle (MITM)

file:///Users/megan/Projects/security-design/docs/mitm.html#mitm

A.4 Limited re-encryption secrecy

A.4.1 Revocation

Removing someone from a vault, group, or team isn’t cryptographically enforced. Cryptographic keys
are not changed.

A member of a vault has access to the vault key, as a copy of the vault key is encrypted with that
member’s public key. When someone is removed from a vault, that copy of the vault key is removed from
the server, and the server will no longer allow that member to get a copy of the vault data.

If prior to being removed from a vault the person makes a copy of the vault key which they store locally,
they will be able to decrypt all future data if they find a way to obtain the encrypted vault data. This is
illustrated in Story 10. Note this requires the attacker both plan ahead and somehow acquire updated
data.

Story 10: Mr. Talk is not a good team player

[Monday] Patty (a dog and Team administrator) adds Mr. Talk (neighbor’s cat) to the Squirrel
Watchers vault. Molly (another dog) is already a member.

[Tuesday] Mr. Talk makes a copy of all of his keys and stores that copy separately from
1Password.

[Wednesday] Mr. Talk is discovered stealing Patty’s toys and is expelled from the vault (and from
the team).

[Thursday] Patty updates the Squirrel Watchers vault with the new hiding place for her toys.

[Friday] Mr. Talk manages to steal a cached copy of the encrypted vault from Molly’s poorly
secured device. (Molly still hasn’t learned the importance of using a device passcode on her
phone.)

[Saturday] Mr. Talk decrypts the data he stole on Friday using the keys he saved on Tuesday, and
is able to see the hiding place Patty added on Thursday.

To launch the attack, Mr. Talk needed to acquire a copy of the encrypted data the server would no
longer provide, and he needed to anticipate being fired.

A.4.2 Your mitigations

If you feel that someone removed from a vault may have a store of their vault keys and will somehow be
able to acquire new encrypted vault data despite being denied access by server policy, then it’s possible
to create a new vault (which will have a new key), and move items from the old vault to the new one.
Someone revoked from a vault won’t be able to decrypt the data in the new vault no matter what
encrypted data they gain access to.

A.5 Account password changes don’t change keysets

A change of or does not create a new personal keyset, it only changes
the with which the personal is encrypted. Thus an attacker who
gains access to a victim’s old personal key set can decrypt it with an old account password and old
Secret Key, and use that to decrypt data that was created by the victim after the change of the account
password.

A.5.1 Your mitigations

A user’s personal keyset may be replaced by voluntarily requesting their account be recovered. This will
create a new personal keyset which will be used to re-encrypt all the vault keys and other items which
were encrypted with the previous personal keyset.

account password Secret Key
Account Unlock Key (AUK) key set

A.6 Local client account password has control of other
account passwords

Most 1Password client applications can handle multiple 1Password user accounts. It’s common,
perhaps even typical, for an individual to have a 1Password membership as part of the business or
organization they’re a member of, as well as being a member of their own 1Password family.

Most 1Password clients are designed to unlock all accounts when unlocked. The account that will locally
contain the encrypted secrets to unlock the others is called the . It’s (for most clients)
the first account the client signed into. The precise details of how this is handled can vary from client to
client, but in essence, the secrets needed to unlock a secondary account (the and) are
encrypted with (keys encrypted by) the AUK of the primary account.

The security risk is that account password policies that may be set and expected by an organization
won’t be followed in practice if the account with such policies is a for a particular
client.

Story 11: A weak primary account password unlocks a stronger account

Molly (a dog) is a member of a business account for Rabbit Chasers Inc., and Patty, an
administrator for Rabbit Chasers Inc., has used the features of a business account to set very
strict account password requirements for all of its members. So Molly’s account password for
that account does conform to that account’s requirements. Patty is naturally under the impression
that Molly must use the strong account password when unlocking her work account.

But Molly is also a member of a family account, and in her family account she has set her
password to be squirrelrabbit , which is easily guessable by anyone familiar with Molly.
Furthermore, Molly set up her family account first when she set up 1Password on her device. She
added her work account later.

When she first added her work account to that device, she had to enter the strong account
password for that account, but every time she unlocks 1Password thereafter, she unlocks both
accounts with squirrelrabbit .

One day the evil neighborhood cat, Mr. Talk, steals Molly’s device. Mr. Talk can guess Molly’s
weak family account account password, and unlocking 1Password on Molly’s computer can now
unlock Molly’s work account as well.

Patty is not amused.

An additional problem with this scheme is that users are more likely to forget they have a separate
account password for their secondary account(s), and are more likely to forget those passwords.

A.6.1 Mitigations

There are no mitigations for users of 1Password 7 and earlier other than risk awareness. 1Password 8
periodically requests the user’s account password by default.

A.7 Policy enforcement mechanisms not always clear
to user

Readers of this document may recall from “Access control enforcement” that some controls (such as the
ability to decrypt and read the contents of a vault) are enforced through cryptography, while others are
enforced only through the client user interface (such as the ability to print the contents of a vault they
have use access to). The security properties of those differ enormously. In particular, it’s very easy to
evade policy that is only enforced by the client.

Many team administrators will not have read this document or other places where the distinction is
documented. Therefore, there’s a potential for them to have an incorrect impression of the security
consequences of their decisions.

primary account

AUK SRP-

secondary account

file:///Users/megan/Projects/security-design/docs/access-control.html#access-control

A.8 Malicious client

There’s no technical barrier to a malicious client, which might generate bad keys or send keys to some
third party.

A.9 Vulnerability of server data

It should be assumed that governments, whether through law enforcement demands or other means,
may gain access to all the data we have or our data hosting provider has. This may happen with or
without our knowledge or consent. The same is true for non-governmental entities which may somehow
obtain server data. Your protection is to have a good and to keep your
secure.

Although we may resist law enforcement requests, we obey the laws of the jurisdictions in which we are
obliged to do so.

A.10 Malicious processes on your devices

Malware that can inspect the memory of your computer or device when the 1Password client has
unlocked your data will be able to extract secrets from the 1Password process. Malware that can install
a malicious version of 1Password and have you execute it will also be able to extract your secrets. After
malware running on a system has gained sufficient power, there’s no way in principle to protect other
processes running on that system.

But we must also consider the threat posed by less powerful malware, and in particular with respect to

the exposure of the .

A.10.1 Malicious or undesired browser components

When you use 1Password in your web browser, browser extensions – even built-in browser features –
can expose the data you fill into your browser. This can have explicit malicious intent, like when a
browser extension monitors the data input into text fields to spy on you. Sometimes this can be
accidental, such as when browser extensions submit the data you put into text fields to perform
autocompletion features, perform translation, or store or analyze the text you’re typing in some other
way.

The 1Password browser extension tries to avoid filling certain form fields if it suspects data may be
submitted elsewhere; however, you should use caution when selecting your web browser and
extensions, and attempt to understand if and when they send text you enter other places.

A.10.2 Locally exposed Secret Keys

After a client is enrolled, it will store a copy of the on the local device. Because the Secret
Key must be used to derive the user’s it cannot be encrypted by the same AUK or by any key
directly or indirectly encrypted with the AUK. Depending on client and client platform, the Secret Key
may be stored on the device using some of the protections offered by the operating system and lightly
obfuscated. But it should be assumed that an attacker who gains read access to the user’s disk will
acquire the Secret Key.

Recall from the discussion of in 4.1.3 that the is designed
so an attacker won’t be in a position to launch an offline password-guessing attack if they capture data

from our server alone. That is, the Secret Key provides extremely strong protection for users if our
servers were to be breached. The Secret Key plays no security role if the user’s system is breached. In
the latter situation, the strength of the user’s determines whether an attacker will
be able to decrypt data captured from the user’s device.

A.10.3 Device keys used with passkey and single sign-on
unlock

A client enrolled using or unlock (described in “Unlock with a passkey or SSO”) doesn’t
store a locally. Instead it stores a locally. The combination of a device key and
successful passkey or SSO authentication is required to unlock a 1Password account on those devices.

On iOS, macOS, and Android devices, we protect the with the device’s hardware security
features; other devices don’t reliably allow protecting an encryption key with hardware, nor do web
browsers on any platform. In cases which we can’t store the device key protected by a hardware

account password Secret Key

Secret Key

Secret Key
AUK

37

two-secret key derivation (2SKD) Secret Key

account password38

passkey SSO
Secret Key device key

device key

file:///Users/megan/Projects/security-design/docs/modernauth.html#sec:2SKD
file:///Users/megan/Projects/security-design/docs/passkeySSO.html#passkeySSO

mechanism, we store it (lightly obfuscated) on the computer’s storage drive. This means malware could
read the device key and can use it to attempt to access a user’s 1Password account.

If Oscar runs malware on Alice’s computer when she uses to unlock 1Password, he can steal both
Alice’s device key and Alice’s SSO session cookies from her browser’s cache. Oscar can use the
combination of items to unlock Alice’s 1Password account. Similarly, if Oscar has access to the hard
drive contents from Alice’s computer (like when he gains access to a backup of Alice’s computer or
performs forensic analysis on her computer) he can copy this information and unlock Alice’s 1Password
account, as well.

Devices that unlock with store their passkey unlocking information in their operating system’s
passkey provider. We rely on the operating system and device manufacturer to prevent malware from
being able to steal the authentiction information for passkeys. We don’t use session information stored in
the web browser to unlock accounts with passkeys.

Because of the risks of the device key and single sign-on authorization data sitting together on a disk we
only offer to businesses that can weigh the risks and rewards of using SSO with device security
aspects. Businesses using SSO can configure the details of devices used, the single sign-on provider
used, and the way single sign-on is used within 1Password to fit their individual security needs.

A.11 Revealing who is registered

If Oscar suspects that alice@company.example is a registered user in a particular Team or Family, it’s
possible for him to submit requests to our server that would allow him to confirm an email address is or
isn’t a member of a team. Note that this does not provide a mechanism for enumerating registered
users, it’s only a mechanism that confirms whether or not a particular user is registered. Oscar must first
make his guess and test that guess.

We attempted to prevent this leak of information and believed we had. A design error (that’s difficult to
fix) means we must withdraw our claim of that protection.

A.12 Use of email

Both invitations and recovery messages are sent by email. It’s very important that when administrators or
 take actions that result in sensitive email being sent, they check with the

recipients through means other than email that the messages were received and acted upon.

34. Adams (1979)

35. 1Password Teams accounts also have a permission called “Manage All Groups” with equivalent
cryptographic access, which is only given to the Administrators and Owners groups by default.

36. An impractical method for the users to run 1Password in a debugger to inspect the crucial values of
the public keys themselves. Additionally, the 1Password command line utility (as of version 0.21),
has an undocumented method to display public keys and fingerprints of users.

37. We’re deliberately vague about this, as practice may change rapidly from version to version,
including different behaviors on different operating system versions.

38. The slow hashing (described in 8.2.4) in our key derivation function goes some way to increase the
work that an attacker must do to verify account password guesses from data captured from the
user, but it cannot substitute a strong account password.

SSO

passkeys

SSO

Recovery Group members

file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-hhg79
file:///Users/megan/Projects/security-design/docs/deepKeys.html#slow-hashing

B Appendix B: Secure Remote Password

In “A modern approach to authentication,” we spoke of mathematical magic.

This appendix offers some insight into that magic.

We insist on this magic even though 1Password’s principle source of security is through
encryption instead of authentication. We need to ensure our authentication system would never provide
an attacker the means to learn anything about the secrets needed to decrypt someone’s data — even if
it were compromised.

We use as our to
achieve the authentication goals set out in Figure 4.1. With SRP, the client can compute from a password
(and a few other things) a number that is imaginatively called . This secret is never transmitted.

B.0.1 Registration

The client computes from the user’s and and from some non-secret
information as described in section B.0.3.

During first registration, the client will compute from a verifier, . During initial registration, the client
sends to the server, along with a non-secret . The client and the server also need to agree on some
other non-secret parameters. The verifier is the only sensitive information ever transmitted, and it’s sent
only during initial registration.

Dangerous bend
The verifier cannot be used directly to compute either or the password that was used to generate ;
however, it’s similar to a password hash in that it can be used in password cracking attempts. That is, an
attacker who has acquired can make a password guess and see if processing that guess yields an
that produces the . Our use of makes it impossible to launch such a
cracking attack without also having the user’s .

B.0.2 Sign-in

The client will be able to compute from the , , and as described in
8.2. The server has . Because of the special relationship between and , the server and client can
present each other mathematical challenges that achieve the following:

Prove to the server the client has the associated with .
Prove to the client the server has the associated with .
Let the client and server agree on a key which can be used for further encrypting the session.

During that exchange, no information about the user’s password is revealed, nor is any information about
 or or revealed to someone listening in. Furthermore, the mathematical challenge the client and

server present to each other is different each time, so one session cannot be replayed.

B.0.3 With a strong KDF

The standards documents describing offer the generation of from the password, ; salt, ; and
username, ; as in Figure B.1. The values of and are public parameters that will be further described
in B.1.

Figure B.1: Deriving and as given in RFC 5054, where H represents a cryptographic hash function (for example, SHA256).

Although it’s to compute from or from , it’s possible to use knowledge of (and the
public parameters) to test a candidate password, . All an opponent needs to do is compute from
and see if equals . If then the guessed password is (almost certainly) the correct password.

As discussed elsewhere, we offer three defenses against such an attack if an attacker obtains (which is
stored on our server and transmitted during initial registrations).

We use with the completely random as one of the
secrets in deriving . Password cracking isn’t a feasible approach for an attacker without the Secret
Key. For a discussion of this point, see 3.2.

Using some mathematical magic the server and the client are able to send each other puzzles that
can only be solved with knowledge of the appropriate secrets, but no secrets are transmitted during
this exchange.

end-to-end

Secure Remote Password (SRP) password-authenticated key exchange (PAKE)

account password Secret Key

salt

two-secret key derivation (2SKD)
Secret Key

account password Secret Key salt
39

SRP

infeasible

two-secret key derivation (2SKD) Secret Key

file:///Users/megan/Projects/security-design/docs/modernauth.html#modernauth
file:///Users/megan/Projects/security-design/docs/modernauth.html#tab:authDesiderata
file:///Users/megan/Projects/security-design/docs/deepKeys.html#sec:keyderiv
file:///Users/megan/Projects/security-design/docs/apsk.html#sec:sk
file:///Users/megan/Projects/security-design/docs/leopard.html
file:///Users/megan/Projects/security-design/docs/mitm.html

Figure B.2: Sophie Germain
(1776–1831) proved that
Fermat’s Last Theorem holds
for exponents
where both and are
prime. Primes like are now
called “Sophie Germain
primes.” Germain stole the
identity of a male
mathematics dropout to enter
into correspondence with
mathematicians in France and
elsewhere in Europe. It’s only
after they’d come to respect
her work that she could reveal
her true identity. Her fame at
the time was mostly for her
work in mathematical physics,
but it her work in number
theory that plays a role in
cryptography today.

We use a slower key derivation function for deriving than the one shown in Figure B.1, so even if
an attacker obtains both and the user’s , each guess is computationally expensive.

We encourage the use of strong account passwords. Thus an attacker who has both and the
 will need to make a very large number of guesses.

The latter two mechanisms come into play only if the is acquired from the user’s device.

It should be noted that although the password processing shown in Figure B.1 is presented in RFC
5054 , the standard does not insist on it. Indeed, RFC 5054 refers to RFC 2954 S3.1 which states

So in our usage, we compute using the key derivation method described in detail in 8.2.

B.1 The math of SRP

B.1.1 Math background

The client will have its derived secret , and the server will have its verifier, . The mathematics that
allow for the client and server to mutually authenticate and arrive at a key without exposing either secret

is an extension of . This key exchange protocol is, in turn, based on
the .

Recall (or relearn) from high school math:

Equation (B.1) holds true even if we restrict ourselves to integers and do all of this exponentiation
modulo some number .

The crux of the is that if we pick and appropriately in equation (B.2)

It’s easy (for a computer) to calculate when given , but to compute when given .

Calculating from (given and) is computing the discrete logarithm of . To ensure calculating the
discrete logarithm is, indeed, infeasible, must be chosen carefully. The particular values of and
used in 1Password are drawn from the groups defined in RFC 3526. Given current and anticipated
computing power, should be at least 2048 bits.

B.1.2 Diffie-Hellman key exchange

If Alice and Bob have agreed on some and , neither of which need to be
secret, Alice can pick a secret random number and calculate

. Bob can pick his own secret, , and calculate
. Alice can send to Bob, and Bob can send to Alice.

Assuming an appropriate and , Alice won’t be able to determine Bob’s
secret exponent , and Bob won’t be able to determine Alice’s secret
exponent . No one listening in – even with full knowledge of , , , and –
will be able to determine or . There is, however, something that both Alice
and Bob can calculate that no one else can. In what follows, it goes without
saying (or writing) that all operations are performed modulo .

Alice can compute:

Equation (B.3) is what Alice actually computes because she knows her secret
 and has been given Bob’s public exponent. But note that the secret, , that

Alice computes is the same as what we see in (B.4).

Bob can compute:

From equations (B.5) and (B.4) we see that both Alice and Bob are computing the same secret, . They
do so without revealing any secrets to each other or anyone listening in.

Secret Key

account password

Secret Key

40 41

SRP can be used with hash functions other than [SHA1]. If the hash function produces an output of
a different length than [SHA1] (20 bytes), it may change the length of some of the messages in the
protocol, but the fundamental operation will be unaffected…

Any hash function used with SRP should produce an output of at least 16 bytes and have the
property that small changes in the input cause significant nonlinear changes in the output. [SRP]
covers these issues in more depth.

Diffie-Hellman key exchange (DHE)
discrete logarithm problem (DLP)

DLP

infeasible

42

43

file:///Users/megan/Projects/security-design/docs/deepKeys.html#sec:keyderiv

Figure B.3: In Diffie-Hellman key exchange, and are
already known to all parties and all exponentiation is done

. The form given here is somewhat less general than
it could be in order to avoid having to introduce more
notation and abstractions.

We use the session key, , as an additional encryption and authentication layer on the client/server
communication for that session. This is in addition to the encryption and authentication provided by TLS
and the authenticated encryption of the user data.

All the secrets used and derived during are ephemeral: They’re created for the individual session
alone. Alice will create a new for each session; Bob will create a new for each session; the derived
session key, , will be unique to that session. One advantage of this is that a successful break of these
secrets by some attacker will allow the attacker to decrypt the messages of that session only.

B.1.3 Authenticated key
exchange

, as described in the previous section, allows Alice
and Bob to agree on an encryption key for their
communication. It doesn’t, however, include a
mechanism by which either Alice or Bob can prove to the
other they are Alice and Bob. Our goal, however, is to
have between the 1Password
client and server.

In order for Alice to prove to Bob she’s the same “Alice”
he has corresponded with previously, she needs to hold
(or regenerate) a long-term secret. At the same time, we
don’t want to transmit any secrets during authentication.

 builds upon , but adds two long-term secrets. is held (or regenerated) by the client and , the
verifier, is stored by the server. The verifier is created by the client from and transmitted only during
initial enrollment, and that’s the only time a secret is transmitted.

As described in detail in “Key derivation,” is derived from a and . The
client computes and sends to the server during initial enrollment.

During a normal sign-in, the client picks a secret random number and computes as described
above in “Diffie-Hellman key exchange”. It sends to the server (along with its email address).

The server picks a random number, , but unlike unauthenticated , it computes as
and sends that to the client.

Everyone (including a possible attacker) can now compute a non-secret from and by using a
hash. The server will calculate a raw as

The client will calculate the same raw as

The client and server will calculate the the same raw if is constructed from as in equation (B.2) and
 and are constructed as described above. The proof is left as an exercise to the reader. (And the

proof this is the only feasible way for the values to be the same is left for advanced texts.)

39. The client may locally store in a way that’s encrypted with keys that depend on the
 instead of recalculating it afresh each time.

40. Taylor et al. (2007)

41. Rehbehn and Fowler (2000)

42. Kivinen and Kojo (2003)

43. There are numerous mathematical assumptions behind the claim that it’s infeasible to determine
from . Mathematicians are confident that some things involved are “hard” to compute but lack full
mathematical proof. There are also some physical assumptions behind the security claims. We know
the relevant computations we want to be difficult are not hard using large quantum computers of a
certain sort. We’re assuming, with some justification, that constructing the appropriate sort of
quantum computer is beyond anyone’s reach for at least a decade. We anticipate the development
of post-quantum cryptographic algorithms over the next decade or so, but nothing is yet suitably
mature to be of use to us now.

44. It doesn’t matter too much how is created, but it must be standardized so the server and client do
it the same way. We use the SHA256 hash of .

DHE

�

DHE

mutual authentication

SRP DHE

account password Secret Key

DHE

44

Account
Unlock Key (AUK)

sec:keyderiv
sec:dhe
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-rfc5054
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-rfc2954
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-rfc3526

C Appendix C: Verifying public keys

At present, there’s no robust method for a user to verify the public key they’re encrypting data to
belongs to their intended recipient. As a consequence, it would be possible for a malicious or

compromised 1Password server to provide dishonest public keys to the user and run a successful
 attack. Under such an attack, it would be possible for the 1Password server to

acquire vault encryption keys with little ability for users to detect or prevent this.

Story 12 illustrates what might happen in the case of such an attack during vault sharing.

Story 12: Mr. Talk is the cat in the middle

Molly (a dog) joins a team, and as she does, generates a public key pair. Let’s say the public key
exponent 17 and public modulus 4171: . (Of course in the actual system that
modulus would be hundreds of digits long.) Only Molly has access to the corresponding private
part, . When Patty (another dog) encrypts something using (17; 4171) only Molly, with
her knowledge that is 593 can decrypt it.

Now suppose Mr. Talk (the neighbor’s cat) has taken control of the 1Password server and
database. Mr. Talk creates another public key, . Because Mr. Talk created that
key, he knows the corresponding private part of the key, , is 1905.

Patty wants to share a vault with Molly. Suppose that vault key is 1729. (In real life that key would
be a much bigger number.) So she asks the server for Molly’s public key. But Mr. Talk, now in
control of the server, doesn’t send her Molly’s real public key — he sends the fake public key he
created. Patty will encrypt the vault key, 1792, using the fake public key that Mr. Talk created.
Encrypting 1729 with (17; 4183) yields 2016. Patty sends that up to the server for delivery to
Molly.

Mr. Talk uses his knowledge of to decrypt the message. So he learns the vault key is 1729. He
then encrypts that with Molly’s real public key, (17; 4147), and gets 2826. When Molly next signs
in, she gets that encrypted vault key and is able to decrypt it using her own secret, . The
message she receives is correctly encrypted with her public key, so she has no reason to suspect
anything went wrong.

Mr. Talk was able to learn the secrets Patty sent to Molly, but he wasn’t able to learn the secret
parts of their public keys.

Dangerous bend

The use of plain RSA (and small numbers) in Story 11 was to simplify the presentation. The
underlying math of the RSA algorithm must be wrapped in a construction that addresses the
numerous and large dangers of plain RSA.

For those who wish to check the math of the story recall that:

;
that for encrypting a message ;
and that decrypting a ciphertext .
In our example ,
and .

For simplicity, Story 12 only works through adding someone to a vault, but the potential attack applies to
any situation in which secrets are encrypted to another’s public key. Thus, this applies during the final
stages of recovery or when a vault is added to any group as well as when a vault is shared with an
individual. This threat is probably most significant with respect to the automatic addition of vaults to the
Recovery Group as described in “Restoring a user’s access to a vault.”

C.1 Types of defenses

The kind of problem we describe here is notoriously difficult to address, and it’s fair to say there are no
good solutions to it in general. There are, however, two categories of (poor) solution that go some way
toward addressing it in other systems.

“Key verification is a weak point in public-key cryptography”45

46

Man
in the Middle (MITM)

47

file:///Users/megan/Projects/security-design/docs/leopard.html#story11
file:///Users/megan/Projects/security-design/docs/restore.html#restore
file:///Users/megan/Projects/security-design/docs/srp.html
file:///Users/megan/Projects/security-design/docs/bibliography.html

C.1.1 Trust hierarchy

The first defense requires everyone with a public key to prove the key really is theirs to a trusted third
party. That trusted third party would then sign or certify the public key as belonging to who it says it
belongs to. The user of the public key would check the certification before encrypting anything with that
key.

Creating or using a trust hierarchy isn’t particularly feasible within 1Password, as each individual user
would need to prove to a third party their key is theirs. That third party cannot be AgileBits or the
1Password server – the goal is to defend against a attack launched from within the 1Password
server. Although the 1Password clients could assist in some of the procedure, it would place costly
burden on each user to prove their ownership of a public key and publish it.

C.1.2 User-to-user verification

The second approach is to enable users to verify keys themselves. They need to perform that verification
over a communication channel that’s not controlled by 1Password. Patty needs to talk directly to Molly,
asking Molly to describe in a manner that will allow Patty to distinguish it from a maliciously
crafted .

In the case of RSA keys, the crucial values may include a number that would be hundreds of digits long
if written out in decimal notation. Thus a cryptographic hash of the crucial numbers is used, which is
then made available presented in some form or other. Personal keysets also contain an

 key pair that’s used for signing. These keys are far shorter than
RSA keys, but may still be too large to be directly compared by humans. Recent research has
confirmed the long suspected belief that the form of fingerprints makes comparisons difficult and subject
to security sensitive errors. Such research does point to ways in which the form of fingerprints can be
improved, and it’s research we’re closely following.

The difficulty for users with verifying keys via fingerprints isn’t just the technicalities of the fingerprint
itself, but in understanding what they’re for and how to make use of them. As Vaziripour, J. Wu, O’Neill,
et al. point out, “The common conclusion of [prior research] is that users are vulnerable to attacks and
cannot locate or perform the authentication ceremony without sufficient instruction. This is largely due to
users’ incomplete mental model of threats and usability problems within secure messaging
applications.”

Users may need to understand:

Fingerprints aren’t secret.
Fingerprints should be verified before using the key to which they are bound.
Fingerprints must be verified over an authentic and tamper-proof channel.
That communication channel must be different from the communication system the user is trying to
establish.

The developers of Signal, a well-respected secure messaging system, summarized some difficulties with
fingerprints

Although their remediation within Signal has a great deal of merit, only a small portion of Signal users
attempt the process of key verification. When they’re instructed to do so (in a laboratory setting) they
often don’t complete the process successfully.

C.2 The problem remains

We’re aware of the threats posed by , and users should be aware of those, too. We’ll continue to
look for solutions, but we’re unlikely to adopt an approach that places a significant additional burden on
the user unless we can have some confidence in the efficacy of such a solution.

45. Free Software Foundation (1999)

46. The role of public key encryption in 1Password is described in “How items are shared with anyone”
and “Restoring a user’s access to a vault.”

47. is the public exponent and is the Carmichael totient, which can be calculated from and ,
the factors of , as .

48. Dechand et al. (2016)

49. Vaziripour et al. (2018)

50. Marlinspike (2016)

51. Vaziripour et al. (2017) and Vaziripour et al. (2018)

MiTM

Elliptic Curve
Digital Signature Algorithm (ECDSA)

48

49

50

Publishing fingerprints requires users to have some rough conceptual knowledge of what a key is,
its relationship to a fingerprint, and how that maps to the privacy of communication.

The practice of publishing fingerprints is based in part on the original idea that users would be able
to manage those keys over a long period of time. This has not proved true, and has become even
less true with the rise of mobile devices.

51

MiTM

file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-GPGHandbook1999
file:///Users/megan/Projects/security-design/docs/share.html#share
file:///Users/megan/Projects/security-design/docs/restore.html#restore
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-DechandETAL:Usesec2016
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-VaziripourETAL:SOUPS2018
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-signal2016:Saftynumbers
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-vaziripour2017you
file:///Users/megan/Projects/security-design/docs/bibliography.html#ref-VaziripourETAL:SOUPS2018

Glossary

Term Definition

Account Key Previous name for the Secret Key. See Secret Key

account
password

Something you must remember and type when unlocking 1Password. It’s never
transmitted from your devices. Previously known as Master Password.

Account Unlock
Key (AUK)

Key used to decrypt a user’s personal key set. It’s derived from the user’s
account password and Secret Key. Previously known as the Master Unlock Key.

Advanced
Encryption
Standard (AES)

Probably the best studied and most widely used symmetric block cipher.

authentication
The process of one entity proving its identity to another. Typically the
authenticating party does this by proving to the verifier that it knows a particular
secret that only the authenticator should know.

authenticity

Knowing who created or sent a message. The typical mechanisms used for this
with respect to data are often the same as those used to protect data integrity;
however, some authentication process may be necessary prior to sending the
data.

BigNum
Some cryptographic algorithms involve arithmetic (particularly exponentiation)
on numbers that are hundreds of digits long. These require the use of Big
Number libraries in the software.

Chosen
Ciphertext Attack
(CCA)

A class of attacks during which the attacker modifies encrypted traffic in
specific ways and may learn plain text by observing how the decryption fails.

confidentiality
Data confidentiality involves keeping data secret. Typically this is achieved by
encrypting the data.

CPace A modern PAKE using a shared secret, defined by Abdalla, Haase, and Hesse.

credential bundle

A bundle containing a randomly generated SRP- and Account Unlock Key
(AUK), used to sign in to 1Password when signing in with single sign-on (SSO).
It’s encrypted by the device key and stored on 1Password servers. See also
Device Key

Cryptographically
Secure Pseudo-
Random Number
Generator
(CSPRNG)

A random number generator whose output is indistinguishable from truly
random. Despite “pseudo” in the name, a CSPRNG is entirely appropriate for
generating cryptographic keys.

device key
A cryptographic key stored on a 1Password client that uses single sign-on
(SSO). It’s used to decrypt the credential bundle it receives from the server upon
successful sign in. See SSO

Diffie-Hellman
key exchange
(DHE)

An application of the discrete logarithm problem (DLP) to provide a way for
parties to decide upon a secret key without revealing any secrets during the
communication. It’s named after Whitfield Diffie and Martin Hellman who
published it in 1976.

discrete
logarithm
problem (DLP)

If ≡ mod (for a carefully chosen and some other conditions) it’s possible to
perform exponentiation to compute from the other variables, but it’s thought
to be infeasible to compute from . Computing from (and the other
parameters) is reversing the exponentiation and is taking a logarithm.

ECDSA using P-
256 and SHA-
256 (ES256)

A digital signature algorithm using Elliptic Curve Digital Signature Algorithm
(ECDSA) and P-256 as named in §3.1 of RFC 7518.

Ellipic Curve
Cryptography
(ECC)

A public key encryption system able to work with much smaller keys than are
used for other public key systems.

Elliptic Curve
Digital Signature
Algorithm
(ECDSA)

A digital signature algorithm based on elliptic curve cryptography described in
FIPS PUB 186-4.

Emergency Kit
Contains your Secret Key, account password, and details about your account.
Your Emergency Kit should be printed and stored in a secure place, and used if
you forget your account password or lose your Secret Key.

52

53

https://agilebits.github.io/security-design/bibliography.html

Term Definition

end-to-end (E2E)
Data is only encrypted or decrypted locally on the users’ devices with keys that
only the end users possess. This protects the data confidentiality and integrity
from compromises during transport or remote storage.

Galois Counter
Mode (GCM)

An authenticated encryption mode for use with block ciphers.

hash-based key
derivation
function (HKDF)

A key derivation function that uses HMAC for key extraction and expansion.
Unlike PBKDF2, it’s not designed for password strengthening.

HTTP Strict
Transport
Security (HSTS)

Strict Transport Security has the server instruct the client that insecure HTTP is
never to be used when talking to the server.

infeasible

Effectively impossible. It’s not technically impossible for a single monkey placed
in front of a manual typewriter for six weeks to produce the complete works of
Shakespeare. It is, however, infeasible, meaning the probability of it happening
is so outrageously low it can be treated as impossible.

integrity
Preventing or detecting tampering with the data. Typically done through
authenticated encryption or message authentication.

item sharing

A mechanism for sharing copies of 1Password items with individuals who are
not members of the account. Also enables item sharing with individuals who
don’t use 1Password. Previously known as the Password Security Sharing Tool
(PSST).

JSON Object
Signing and
Encryption
(JOSE)

A suite of specifications for creating and using Javascript objections for data
protection and authentication. It includes JSON Web Key (JWK) and JSON Web
Token (JWT).

JSON Web Key
(JWK)

A format for describing and storing cryptographic keys defined in RFC 7517.

JSON Web Token
(JWT)

A means of representing claims to be transferred between two parties and
defined in RFC 7517. These are typically signed cryptographically.

key encryption
key (KEK)

An encryption key used for the sole purpose of encrypting another
cryptographic key.

key set How collections of keys and their metadata are organized within 1Password.

linked app or
browser

A client trusted to use SSO by having set up a device key and created a
corresponding credential bundle.

Man in the
Middle (MITM)

A Man in the Middle attack has Alice believing she’s encrypting data to Bob,
while she’s actually encrypting her data to a malicious actor who then re-
encrypts the data to Bob. The typical defense for such an attack is for Alice and
Bob to manually verify they’re using the correct public keys for each other. The
other approach is to rely on a trusted third party who independently verifies and
signs Bob’s public key.

multi-factor
authentication
(MFA)

Requiring a combination of secrets (broadly speaking) such as a password or
cryptographic key held on a device to grant access to a resource.

mutual
authentication

A process in which all parties prove their identity to each other.

nonce

A non-secret value used in conjunction with an encryption key to ensure
relationships between multiple plaintexts are not preserved in the encrypted
data. Never encrypt different data with the same combination of key and nonce.
Ideally, most software developers using encryption – as they should – would
never have to interact with or much less understand the difference between
them. We don’t live in such a world.

passkey

A credential with which you authenticate to a server. Unlike a password, the
passkey isn’t sent to the server to authenticate. Instead, the passkey signs a
challenge the server provides to your device. This process is also known as
WebAuthn or FIDO2 authentication.

password-
authenticated
key exchange
(PAKE)

Password-based key exchange protocol allows for a client and server to
mutually authenticate each other and establish a key for their session. It relies
on either a secret each have or related secrets that each have.

primary account
A local 1Password client may distinguish a single account it knows about as the
primary account. Unlocking this account may automatically unlock secondary
accounts the client may handle. See also secondary account

reauthentication
token

An authorization token kept by clients that use biometrics to perform a quick
unlock of their single sign-on (SSO) user accounts.

54

55

Term Definition

Recovery Group
The 1Password Group that holds a copy of the vault keys for vaults that may
need to be recovered if account passwords or Secret Keys are lost.

representational
state transfer
(REST)

A software design approach that, among other things, allows a service to
interact with clients in a simple and predictable manner.

RESTful The adjectival form of representational state transfer (REST). See REST

Recovery Group
member

A member of a Recovery Group. See Recovery Group

salt
A non-secret value added to either an encryption process or hashing to ensure
the result of the encryption is unique. Salts are typically random and unique.

secondary
account

An account that a client may unlocked automatically when the primary account
is unlocked. See also primary account

Secret Key

A randomly generated user secret key that is created upon first signup. It’s
created and stored locally. Along with the user’s account password, it’s required
both for decrypting data and authenticating to the server. The Secret Key
prevents an attacker who has acquired remotely stored data from attempting to
guess a user’s account password. Previously known as the Account Key.

Secure Remote
Password (SRP)

A method for both a client and server to authenticate each other without either
revealing any secrets. In the process, they also agree on an encryption key to
be used for the current session. We’re using Version 6 with a modified key
derivation function.

single sign-on
(SSO)

In the setting of a company or another organization, when you are provided with
a single set of username, password, or other authentication factors to log in to
services that company or organization provides for you. It’s one of the methods
that can be used to sign in to 1Password.

slow hash
A cryptographic hash function designed to be computationally expensive. Used
for hashing passwords or other guessible inputs to make guessing more
expensive to an attacker who has the hash output.

SRP-
The Secure Remote Password (SRP) verifier, , used by the server to
authenticate the client.

SRP-
The client secret, , used by the Secure Remote Password (SRP) protocol.
Derived from the user’s account password and Secret Key.

Transport Layer
Security (TLS)

The successor to SSL. It puts the “S” in HTTPS.

two-secret key
derivation (2SKD)

Two different secrets, each with their own security properties, are used in
deriving encryption and authentication keys. In 1Password, these are your
account password (something you know) and your Secret Key (a high-entropy
secret you have on your device).

Unicode
Normalization
Form
Compatibility
Decomposition
(NFKD)

A consistent normal form for Unicode characters that could otherwise be
different sequences of bytes.

Universally
Unique Identifier
(UUID)

A large arbitrary identifier for an entity. No two entities in the universe should
have the same UUID.

zero-knowledge
protocol

A way for parties to make use of secrets without revealing those secrets to each
other. See also SRP

52. Abdalla, Haase, and Hesse (2023)

53. National Institute of Standards and Technology (2013)

54. Krawczyk (2010)

55. Jones (2015)

56. Taylor et al. (2007)

56

https://agilebits.github.io/security-design/bibliography.html#ref-DraftCpaceRFCv07
https://agilebits.github.io/security-design/bibliography.html#ref-NIST:2013:DSS
https://agilebits.github.io/security-design/bibliography.html#ref-cryptoeprint:2010:264
https://agilebits.github.io/security-design/bibliography.html#ref-rfc7517
https://agilebits.github.io/security-design/bibliography.html#ref-rfc5054

Bibliography

Abdalla, M., B. Haase, and J. Hesse. 2023. “CPace, a Balanced Composable PAKE.” 2023.
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/.

Adams, Douglas. 1979. The Hitchhiker’s Guide to the Galaxy. 1st American ed. New York: Harmony
Books.

AgileBits. 2015. “OPVault Design.” August 28, 2015. https://support.1password.com/opvault-design/.

Arciszewski, Scott. 2017. “No Way, JOSE!” March 14, 2017. https://paragonie.com/blog/2017/03/jwt-
json-web-tokens-is-bad-standard-that-everyone-should-avoid.

Dechand, Sergej, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith.
2016. “An Empirical Study of Textual Key-Fingerprint Representations.” In 25th USENIX Security
Symposium (USENIX Security 16), 193–208. Austin, TX: USENIX Association.
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand.

Free Software Foundation. 1999. “The GNU Privacy Handbook.” The Free Software Foundation. 1999.
https://www.gnupg.org/gph/en/manual.html.

Goldberg, Jeffrey. 2013. “You Have Secrets; We Don’t: Why Our Data Format Is Public.” AgileBits. May 6,
2013. https://blog.1password.com/you-have-secrets-we-dont-why-our-data-format-is-public/.

———. 2021. “How Strong Should Your Account Password Be? Here’s What We Learned.” September
27, 2021. https://blog.1password.com/cracking-challenge-update/.

Hunt, Troy. 2019. “Extended Validation Certificates Are (Really, Really) Dead.” August 13, 2019.
https://www.troyhunt.com/extended-validation-certificates-are-really-really-dead/.

Jackson, Collin, Daniel R. Simon, Desney S. Tan, and Adam Barth. 2007. “An Evaluation of Extended
Validation and Picture-in-Picture Phishing Attacks.” In Financial Cryptography and Data Security,
edited by Sven Dietrich and Rachna Dhamija, 281–93. Berlin, Heidelberg: Springer Berlin Heidelberg.

Jones, M. 2015. “JSON Web Key (JWK).” Request for Comments. Internet Engineering Task Force; RFC
7517 (Proposed Standard); IETF. http://www.ietf.org/rfc/rfc7517.txt.

Kivinen, T., and M. Kojo. 2003. “More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE).” Request for Comments. Internet Engineering Task Force; RFC 3526 (Proposed
Standard); IETF. http://www.ietf.org/rfc/rfc3526.txt.

Knuth, Donald Ervin. 1984. The TeXbook. Reading, Mass.: Addison-Wesley.

Krawczyk, Hugo. 2010. “Cryptographic Extraction and Key Derivation: The HKDF Scheme.” Cryptology
ePrint Archive, Report 2010/264.

Marlinspike, Moxie. 2016. “Safety Number Updates.” Open Whisper Systems. November 17, 2016.
https://signal.org/blog/safety-number-updates/.

National Institute of Standards and Technology. 2013. FIPS PUB 186-4: Digital Signature Standard (DSS).
Gaithersburg, MD, USA: National Institute for Standards; Technology.
https://csrc.nist.gov/publications/detail/fips/186/4/final.

Pornin, Thomas. 2015. “The MAKWA Password Hashing Function.” 2015.
http://www.bolet.org/makwa/makwa-spec-20150422.pdf.

Rehbehn, K., and D. Fowler. 2000. “Definitions of Managed Objects for Frame Relay Service.” Request
for Comments. Internet Engineering Task Force; RFC 2954 (Proposed Standard); IETF.
http://www.ietf.org/rfc/rfc2954.txt.

Taylor, D., T. Wu, N. Mavrogiannopoulos, and T. Perrin. 2007. “Using the Secure Remote Password (SRP)
Protocol for TLS Authentication.” Request for Comments. Internet Engineering Task Force; RFC 5054
(Informational); IETF. http://www.ietf.org/rfc/rfc5054.txt.

Vaziripour, Elham, Justin Wu, Mark O’Neill, Ray Clinton, Jordan Whitehead, Scott Heidbrink, Kent
Seamons, and Daniel Zappala. 2017. “Is That You, Alice? A Usability Study of the Authentication
Ceremony of Secure Messaging Applications.” In Symposium on Usable Privacy and Security
(SOUPS).

Vaziripour, Elham, Justin Wu, Mark O’Neill, Daniel Metro, Josh Cockrell, Timothy Moffett, Jordan
Whitehead, Nick Bonner, Kent Seamons, and Daniel Zappala. 2018. “Action Needed! Helping Users
Find and Complete the Authentication Ceremony in Signal.” In Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018), 47–62. Baltimore, MD: USENIX Association.
https://www.usenix.org/conference/soups2018/presentation/vaziripour.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/
https://support.1password.com/opvault-design/
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://www.gnupg.org/gph/en/manual.html
https://blog.1password.com/you-have-secrets-we-dont-why-our-data-format-is-public/
https://blog.1password.com/cracking-challenge-update/
https://www.troyhunt.com/extended-validation-certificates-are-really-really-dead/
http://www.ietf.org/rfc/rfc7517.txt
http://www.ietf.org/rfc/rfc3526.txt
https://signal.org/blog/safety-number-updates/
https://csrc.nist.gov/publications/detail/fips/186/4/final
http://www.bolet.org/makwa/makwa-spec-20150422.pdf
http://www.ietf.org/rfc/rfc2954.txt
http://www.ietf.org/rfc/rfc5054.txt
https://www.usenix.org/conference/soups2018/presentation/vaziripour
https://agilebits.github.io/security-design/mitm.html
https://agilebits.github.io/security-design/glossary.html

